An Evolutionary RBFNN Learning Algorithm for Complex Classzification Problems | SpringerLink
Skip to main content

An Evolutionary RBFNN Learning Algorithm for Complex Classzification Problems

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4492))

Included in the following conference series:

Abstract

A self-optimizing approach for complex classifications is proposed in this paper to construct dynamical radial basis function neural network (RBFNN) models based on a specially designed genetic algorithm (GA). The algorithm adopts a matrix-form mixed encoding and specifically designed genetic operators to optimize the decayed-radius selected clustering (DRSC) process by co-evolving all of the parameters of the network’s layout. The individual fitness is evaluated as a multi-objective optimization task and the weights between the hidden layer and the output layer are calculated by the pseudo-inverse algorithm. Experimental results on eight UCI datasets show that the GA-RBFNN can produce a higher accuracy of classification with a much simpler network structure and outperform those models of neural network based on other training methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhu, Q., Cai, Y., Liu, L.: A Global Learning Algorithm for a RBF Network. Neural Networks 12, 527–540 (1999)

    Article  Google Scholar 

  2. Leonardis, A., Bischof, H.: An Efficient MDL Based Construction of RBF Networks. Neural Networks 11, 963–973 (1998)

    Article  Google Scholar 

  3. Arifovic, J., Gencay, R.: Using Genetic Algorithms to Select Architecture of a Feedforward Artificial Neural Network. Physica A: Statistical Mechanics and its Applications 289, 574–594 (2001)

    Article  MATH  Google Scholar 

  4. Sarimveis, H., Alexandridis, A., et al.: A New Algorithm for Developing Dynamic Radial Basis Function Neural Network Models Based on Genetic Algorithms. Computers and Chemical Engineering 28, 209–217 (2004)

    Article  Google Scholar 

  5. Li, M.Q., Kou, J.S., et al.: The Basic Theories and Applications in GA. Science Press, Beijing (2002)

    Book  Google Scholar 

  6. Berthold, M.R., Diamond, J.: Boosting the Performance of RBF Networks with Dynamic Decay Adjustment. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, Denver Colorado, pp. 512–528. MIT Press, Cambridge (1995)

    Google Scholar 

  7. Zhao, W.X., Wu, L.D.: RBFN Structure Determination Strategy Based on PLS and Gas. Journal of Software 13, 1450–1455 (2002)

    Google Scholar 

  8. Burdsall, B., Christophe, G.-C.: GA-RBF: A Self-Optimizing RBF Network. In: Smith, G.D., et al. (eds.) Proceedings of the Third International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA’97), Norwich, pp. 348–351. Springer, Heidelberg (1997)

    Google Scholar 

  9. Bosman, P.A.N., Thierens, D.: The Balance between Proximity and Diversity in Multiobjective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 7, 174–188 (2003)

    Article  Google Scholar 

  10. Liu, Y., Yao, X., Higuchi, T.: Evolutionary Ensembles with Negative Correlation Learning. IEEE Transactions on Evolutionary Computation 4, 380–387 (2000)

    Article  Google Scholar 

  11. Frank, E., Wang, Y., Inglis, S., et al.: Using Model Trees for Classification. Machine Learning 32, 63–76 (1998)

    Article  MATH  Google Scholar 

  12. Erick, C.-P., Chandrika, K.: Inducing Oblique Decision Trees with Evolutionary Algorithms. IEEE Trans. Evolution Computation 7, 54–68 (2003)

    Article  Google Scholar 

  13. Guo, G., Wang, H., Bell, D.J., Bi, Y., Greer, K.: KNN Model-Based Approach in Classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 986–996. Springer, Heidelberg (2003)

    Google Scholar 

  14. Friedman, J., Trevor, H., Tibshirani, R.: Additive Logistic Regression: a Statistical View of Boosting. The Annals of Statistics 28, 337–407 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Draghici, S.: The Constraint Based Decomposition (CBD) Training Architecture. Neural Networks 14, 527–550 (2001)

    Article  Google Scholar 

  16. Webb, G.I.: Multiboosting: A Technique for Combining Boosting and Wagging. Machine Learning 40, 159–196 (2000)

    Article  MathSciNet  Google Scholar 

  17. Yang, J., Parekh, R., Honavar, V.: DistAI: An Inter-pattern Distance-based Constructive Learning Algorithm. Intelligent Data Analysis 3, 55–73 (1999)

    Article  MATH  Google Scholar 

  18. Frank, E., Witten, I.H.: Generating Accurate Rule Sets Without Global Optimization. In: Shavlik, J.W. (ed.) Proceedings of the Fifteenth International Conference on Machine Learning, pp. 144–151. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Derong Liu Shumin Fei Zengguang Hou Huaguang Zhang Changyin Sun

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Tian, J., Li, M., Chen, F. (2007). An Evolutionary RBFNN Learning Algorithm for Complex Classzification Problems. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72393-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72393-6_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72392-9

  • Online ISBN: 978-3-540-72393-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics