Adaptive Fuzzy Inventory Control Algorithm for Replenishment Process Optimization in an Uncertain Environment | SpringerLink
Skip to main content

Adaptive Fuzzy Inventory Control Algorithm for Replenishment Process Optimization in an Uncertain Environment

  • Conference paper
Business Information Systems (BIS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4439))

Included in the following conference series:

Abstract

This paper presents a real case study of warehouse replenishment process optimization on a selected sample of representative materials. Optimization is performed with simulation model supported by inventory control algorithms. The adaptive fuzzy inventory control algorithm based on fuzzy stock-outs, highest stock level and total cost is introduced. The algorithm is tested and compared to the simulation results of the actual warehouse process and classic inventory control algorithms such as Least-unit cost, Part period balancing and Silver-Meal algorithm. The algorithms are tested on historic data and assessed using the Fuzzy Strategy Assessor (FSA). Simulation results are presented and advantages of fuzzy inventory control algorithm are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Silver, E.A., Pyke, D.F., Peterson, R.: Inventory management and production planning and scheduling. Wiley, Chichester (1998)

    Google Scholar 

  2. Tompkins, A.J., Smith, J.D.: The warehouse management handbook. Tompkins Press, Boston (1998)

    Google Scholar 

  3. Kljajić, M., Bernik, I., Škraba, A.: Simulation approach to decision assessment in enterprises. Simulation 74(4), 199–210 (2000)

    Article  Google Scholar 

  4. Minner, S.: Strategic safety stocks in supply chains. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  5. Reiner, G., Trcka, M.: Customized supply chain design: Problems and alternatives for a production company in the food industry. A simulation based analysis. International Journal of Production Economics 89(2), 217–229 (2004)

    Article  Google Scholar 

  6. Rotshtein, A.P., Rakityanskaya, A.B.: Inventory control as an identification problem based on fuzzy logic. Cybernetics and Systems Analysis 43(3), 411–419 (2006)

    Article  Google Scholar 

  7. Samanta, B., Al-Araimi, S.A.: Application of an adaptive neuro-fuzzy inference system in inventory control. International Journal of Smart Engineering System Design 5(4), 547–553 (2003)

    Article  Google Scholar 

  8. Shervais, S., Shannon, T.T.: Adaptive critic based adaptation of a fuzzy policy manager for a logistic system. In: Smith, M.H., Gruver, W.A., Hall, L.O. (eds.) Proceedings of IFSA/NAFIPS (2001)

    Google Scholar 

  9. Xiong, G., Koivisto, H.: Research on fuzzy inventory control under supply chain management environment. In: Sloot, P.M.A., et al. (eds.) ICCS 2003. LNCS, vol. 2658, pp. 907–916. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Rosen, R.: Anticipatory systems. Pergamon Press, New York (1985)

    Google Scholar 

  11. Ertogral, K., Darwish, M., Ben-Daya, M.: Production and shipment lot sizing in a vendor-buyer supply chain with transportation cost. European Journal of Operational Research 176(3), 1592–1606 (2007)

    Article  MATH  Google Scholar 

  12. Kljajić, M., et al.: Warehouse optimization in uncertain environment. In: Proceedings of the 22nd International Conference of the System Dynamics Society, Oxford, England, UK, July 2004, System Dynamics Society (2004)

    Google Scholar 

  13. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dey, J.K., Kar, S., Maiti, M.: An interactive method for inventory control with fuzzy lead-time and dynamic demand. European Journal of Operational Research 167, 381–397 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Katagiri, H., Ishii, H.: Some inventory problems with fuzzy shortage cost. fuzzy sets and systems. Fuzzy Sets and Systems 111(1), 87–97 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Petrovic, D., Roy, R., Petrovic, R.: Modelling and simulation of a supply chain in an uncertain environment. European Journal of Operational Research 109(1), 200–309 (1998)

    Google Scholar 

  17. Petrovic, D., Roy, R., Petrovic, R.: Supply chain modelling using fuzzy sets. International Journal of Production Economics 59(1-3), 443–453 (1999)

    Article  Google Scholar 

  18. Petrovic, R., Petrovic, D.: Multicriteria ranking of inventory replenishment policies in the presence of uncertainty in customer demand. International Journal of Production Economics 71(1-3), 439–446 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Witold Abramowicz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kofjač, D., Kljajić, M., Škraba, A., Rodič, B. (2007). Adaptive Fuzzy Inventory Control Algorithm for Replenishment Process Optimization in an Uncertain Environment. In: Abramowicz, W. (eds) Business Information Systems. BIS 2007. Lecture Notes in Computer Science, vol 4439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72035-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72035-5_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72034-8

  • Online ISBN: 978-3-540-72035-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics