Anticipative Agent Based System Synchronization Example | SpringerLink
Skip to main content

Anticipative Agent Based System Synchronization Example

  • Conference paper
Business Information Systems (BIS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4439))

Included in the following conference series:

Abstract

The concept of feedback-anticipative control as the extension of classical Wiener paradigm is considered in the context of multi agent systems. The behavior of complex real world agents is based on the consideration of feedback information as well as on the anticipation. A linear model of the agents with a nonlinear interaction rule is proposed as the mean for the methodological conception. The results of the developed system display a periodic response. An analytical determination of periodicity conditions for individual agents was performed by the application of z-transform. Proof of system stability for the case of two interacting agents has been provided. The hyperincursivity paradigm is presented as an interesting methodological platform for further investigation of multi agent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dubois, D., Resconi, G.: Hyperincursivity: a new mathematical theory. Presses Universitaires de Liège, Liège (1992)

    Google Scholar 

  2. Sycara, K.P.: Multiagent systems. AI Magazine 19(2), 79–92 (1998)

    Google Scholar 

  3. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. Wiley, New York (1948)

    Google Scholar 

  4. Simon, H.: Models of Man: Social and Rational – Mathematical Essays on Rational Human Behavior in a Social Setting. Wiley, New York (1957)

    MATH  Google Scholar 

  5. Dubois, D.M.: Orbital stability and chaos with incursive algorithms for the nonlinear pendulum. International Journal of Computing Anticipatory Systems 14, 3–18 (2004)

    Google Scholar 

  6. Rosenblum, M., Pikovsky, A.: Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators. Contemporary Physics 44(5), 401–416 (2003)

    Article  Google Scholar 

  7. Puu, T., Sushko, I.: A business cycle model with cubic nonlinearity. Chaos, Solitons and Fractals 19(3), 597–612 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Agarwal, R.P., et al.: Discrete Oscillation Theory. Hindawi Publishing Corp., New York (2005)

    MATH  Google Scholar 

  9. Sonis, M.: Critical bifurcation surfaces of 3d discrete dynamics. Discrete Dynamics in Nature and Society 4(4), 333–343 (1999)

    Article  Google Scholar 

  10. Sonis, M.: Linear bifurcation analysis with application to relative socio–spatial dynamics. Discrete Dynamics in Nature and Society 1(1), 45–56 (1996)

    Article  Google Scholar 

  11. Strogatz, S.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Addison-Wesley, Reading (1994)

    Google Scholar 

  12. Hogg, T., Huberman, B.A.: Controlling chaos in distributed systems. IEEE Transactions on Systems Man and Cybernetics 21(6), 1325–1332 (1991)

    Article  Google Scholar 

  13. Kociuba, G., Heckenberg, N.R., White, A.G.: Transforming chaos to periodic oscillations. Physical Review E 64(5), 056220–1–056220–8 (2001)

    Google Scholar 

  14. Matsumoto, A.: Ergodic cobweb chaos. Discrete Dynamics in Nature and Society 1(2), 135–146 (1997)

    Article  MATH  Google Scholar 

  15. Luenberger, D.G.: Introduction to Dynamics Systems: Theory, Models and Applications. John & Wiley Sons, Hoboken (1979)

    Google Scholar 

  16. Kreyszig, E.: Advanced Engineering Mathematics. John Wiley & Sons, Hoboken (1993)

    MATH  Google Scholar 

  17. Kljajić, M.: Contribution to the meaning and understanding of anticipatory systems. In: Dubois, D.M. (ed.) Computing anticipatory systems, pp. 400–411. American Institute of Physics (2001)

    Google Scholar 

  18. Škraba, A., et al.: Periodic cycles in discrete cobweb model. WSEAS Transactions on Mathematics 3(4), 196–203 (2005)

    Google Scholar 

  19. Škraba, A., et al.: Anticipative cobweb oscillatory agents and determination of stability regions by lyapunov exponents. WSEAS Transactions on Mathematics 12(5), 1282–1289 (2006)

    Google Scholar 

  20. Pažek, K., et al.: Ein Simulationsmodell für Investitionsanalyse der Nahrungsmittelverarbeitung auf ökologischen Betrieben in Slowenien. Bodenkultur 56(2), 121–131 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Witold Abramowicz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Škraba, A., Kljajić, M., Kofjač, D., Rodič, B., Bren, M. (2007). Anticipative Agent Based System Synchronization Example. In: Abramowicz, W. (eds) Business Information Systems. BIS 2007. Lecture Notes in Computer Science, vol 4439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72035-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72035-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72034-8

  • Online ISBN: 978-3-540-72035-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics