An Adaptive Global-Local Memetic Algorithm to Discover Resources in P2P Networks | SpringerLink
Skip to main content

An Adaptive Global-Local Memetic Algorithm to Discover Resources in P2P Networks

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4448))

Included in the following conference series:

Abstract

This paper proposes a neural network based approach for solving the resource discovery problem in Peer to Peer (P2P) networks and an Adaptive Global Local Memetic Algorithm (AGLMA) for performing the training of the neural network. This training is very challenging due to the large number of weights and noise caused by the dynamic neural network testing. The AGLMA is a memetic algorithm consisting of an evolutionary framework which adaptively employs two local searchers having different exploration logic and pivot rules. Furthermore, the AGLMA makes an adaptive noise compensation by means of explicit averaging on the fitness values and a dynamic population sizing which aims to follow the necessity of the optimization process. The numerical results demonstrate that the proposed computational intelligence approach leads to an efficient resource discovery strategy and that the AGLMA outperforms two classical resource discovery strategies as well as a popular neural network training algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: Proc. of the 22nd Intern. Conf. on Distributed Computing Systems, pp. 5–14 (2002)

    Google Scholar 

  2. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-peer networks. In: Proc. of the 16th ACM Intern. Conf. on Supercomputing, pp. 84–95 (2002)

    Google Scholar 

  3. Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A local search mechanism for peer-to-peer networks. In: Proc. 11th ACM Intern. Conf. on Information and Knowledge Management, pp. 300–307 (2002)

    Google Scholar 

  4. Menascé, D.A.: Scalable p2p search. IEEE Internet Computing 7(2), 83–87 (2003)

    Article  Google Scholar 

  5. Tsoumakos, D., Roussopoulos, N.: Adaptive probabilistic search for peer-to-peer networks. In: Proc. 3rd IEEE Intern. Conf. on P2P Computing, pp. 102–109 (2003)

    Google Scholar 

  6. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: Proc. of the 22nd IEEE Intern. Conf. on Distributed Computing Systems. pp. 23–33 (2002)

    Google Scholar 

  7. Sarshar, N., Boykin, P.O., Roychowdhury, V.P.: Percolation search in power law networks: Making unstructured peer-to-peer networks scalable. In: Proc. of the IEEE 4th Intern. Conf. on P2P Computing, pp. 2–9 (2004)

    Google Scholar 

  8. Vapa, M., Kotilainen, N., Auvinen, A., Kainulainen, H., Vuori, J.: Resource discovery in p2p networks using evolutionary neural networks. In: Intern. Conf. on Advances in Intelligent Systems - Theory and Applications, 067-04. (2004)

    Google Scholar 

  9. Engelbrecht, A.: Computational Intelligence-An Introduction. J. Wiley, New York, NY (2002)

    Google Scholar 

  10. Kotilainen, N., Vapa, M., Keltanen, T., Auvinen, A., Vuori, J.: P2prealm - peer-to-peer network simulator. In: IEEE Intern. Works. on Computer-Aided Modeling, Analysis and Design of Communication Links and Networks, pp. 93–99 (2006)

    Google Scholar 

  11. Chellapilla, K., Fogel, D.: Evolving neural networks to play checkers without relying on expert knowledge. IEEE Trans. Neural Networks 10(6), 1382–1391 (1999)

    Article  Google Scholar 

  12. Chellapilla, K., Fogel, D.: Evolving an expert checkers playing program without using human expertise. IEEE Trans. Evol. Computation 5(4), 422–428 (2001)

    Article  Google Scholar 

  13. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  14. Neri, F., Cascella, G.L., Salvatore, N., Kononova, A.V., Acciani, G.: Prudent-daring vs tolerant survivor selection schemes in control design of electric drives. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 805–809. Springer, Berlin Heidelberg New York (2006)

    Chapter  Google Scholar 

  15. Krasnogor, N.: Toward robust memetic algorithms. In: Hart, W.E. et al. (ed.) Recent Advances in Memetic Algorithms, pp. 185–207. Springer, Berlin Heidelberg, New York (2004)

    Google Scholar 

  16. Cerny, V.: A thermodynamical approach to the traveling salesman problem. Theory and Applications 45(1), 41–51 (1985)

    MathSciNet  MATH  Google Scholar 

  17. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. Journal of the ACM 8, 212–229 (1961)

    Article  MATH  Google Scholar 

  18. Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.S.: An adaptive multimeme algorithm for designing hiv multidrug therapies. IEEE/ACM Transactions on Computational Biology and Bioinformatics, Special Issue on Computational Intelligence Approaches in Computational Biology and Bioinformatics (2007) (to appear)

    Google Scholar 

  19. Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive memetic algorithm for on-line and off-line control design of PMSM drives. IEEE Trans. on System Man. and Cybernetics-part B. 37(1), 28–41 (2007)

    Article  Google Scholar 

  20. Neri, F., Toivanen, J., Mäkinen, R.A.E.: An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV. Springer, Berlin Heidelberg New York (2007)

    Google Scholar 

  21. Neri, F., Mäkinen, R.A.E.: Hierarchical evolutionary algorithms and noise compensation via adaptation. In: Yang, S. et al. (ed.) Evolutionary Computation in Dynamic and Uncertain Environments, Springer, Berlin Heidelberg, New York (2007)

    Google Scholar 

  22. Miller, B.L., Goldberg, D.E.: Genetic algorithms, selection schemes, and the varying effects of noise. Evolutionary Computation 4(2), 113–131 (1996)

    Article  Google Scholar 

  23. Schmidt, C., Branke, J., Chick, S.E.: Integrating techniques from statistical ranking into evolutionary algorithms. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 752–763. Springer, Berlin Heidelberg New York (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neri, F., Kotilainen, N., Vapa, M. (2007). An Adaptive Global-Local Memetic Algorithm to Discover Resources in P2P Networks. In: Giacobini, M. (eds) Applications of Evolutionary Computing. EvoWorkshops 2007. Lecture Notes in Computer Science, vol 4448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71805-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71805-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71804-8

  • Online ISBN: 978-3-540-71805-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics