Visual Analytics: Definition, Process, and Challenges | SpringerLink
Skip to main content

Visual Analytics: Definition, Process, and Challenges

  • Chapter
Information Visualization

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4950))

Abstract

We are living in a world which faces a rapidly increasing amount of data to be dealt with on a daily basis. In the last decade, the steady improvement of data storage devices and means to create and collect data along the way influenced our way of dealing with information: Most of the time, data is stored without filtering and refinement for later use. Virtually every branch of industry or business, and any political or personal activity nowadays generate vast amounts of data. Making matters worse, the possibilities to collect and store data increase at a faster rate than our ability to use it for making decisions. However, in most applications, raw data has no value in itself; instead we want to extract the information contained in it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aigner, W., Miksch, S., Müller, W., Schumann, H., Tominski, C.: Visual methods for analyzing time-oriented data. IEEE Transactions on Visualization and Computer Graphics 14(1), 47–60 (2008)

    Article  Google Scholar 

  2. Amar, R.A., Eagan, J., Stasko, J.T.: Low-level components of analytic activity in information visualization. In: INFOVIS, p. 15 (2005)

    Google Scholar 

  3. Amiel, M., Melançon, G., Rozenblat, C.: Réseaux multi-niveaux: l’exemple des échanges aériens mondiaux. M@ppemonde 79(3) (2005)

    Google Scholar 

  4. Andrienko, G., Andrienko, N., Jankowski, P., Keim, D., Kraak, M.-J., MacEachren, A., Wrobel, S.: Geovisual analytics for spatial decision support: Setting the research agenda. Special issue of the International Journal of Geographical Information Science 21(8), 839–857 (2007)

    Article  Google Scholar 

  5. Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement data. ACM SIGKDD Explorations 9(2) (2007)

    Google Scholar 

  6. Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal Data. Springer, Heidelberg (2005)

    Google Scholar 

  7. Auber, D., Chiricota, Y., Jourdan, F., Melançon, G.: Multiscale visualization of small world networks. In: INFOVIS (2003)

    Google Scholar 

  8. Card, S.K., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  9. Ceglar, A., Roddick, J.F., Calder, P.: Guiding knowledge discovery through interactive data mining, pp. 45–87. IGI Publishing, Hershey (2003)

    Google Scholar 

  10. Chiricota, Y., Melançon, G.: Visually mining relational data. International Review on Computers and Software (2005)

    Google Scholar 

  11. Das, A.: Semantic approximation of data stream joins. IEEE Transactions on Knowledge and Data Engineering 17(1), 44–59 (2005), Member-Johannes Gehrke and Member-Mirek Riedewald

    Article  Google Scholar 

  12. Dix, A., Finlay, J.E., Abowd, G.D., Beale, R.: Human-Computer Interaction (.), 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2003)

    Google Scholar 

  13. Duda, R., Hart, P., Stock, D.: Pattern Classification. John Wiley and Sons Inc., Chichester (2000)

    Google Scholar 

  14. Dykes, J., MacEachren, A., Kraak, M.-J.: Exploring geovisualization. Elsevier Science, Amsterdam (2005)

    Google Scholar 

  15. Engel, K., Hadwiger, M., Kniss, J.M., Rezk-salama, C., Weiskopf, D.: Real-time Volume Graphics. A. K. Peters, Ltd., Natick (2006)

    Google Scholar 

  16. Ester, M., Sander, J.: Knowledge Discovery in Databases - Techniken und Anwendungen. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  17. Forsell, C., Seipel, S., Lind, M.: Simple 3d glyphs for spatial multivariate data. In: INFOVIS, p. 16 (2005)

    Google Scholar 

  18. Han, J., Kamber, M. (eds.): Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  19. Hand, D., Mannila, H., Smyth, P. (eds.): Principles of Data Mining. MIT Press, Cambridge (2001)

    Google Scholar 

  20. Inselberg, A., Dimsdale, B.: Parallel Coordinates: A Tool for Visualizing Multivariate Relations (chapter 9), pp. 199–233. Plenum Publishing Corporation, New York (1991)

    Google Scholar 

  21. Jacko, J.A., Sears, A.: The Handbook for Human Computer Interaction. Lawrence Erlbaum & Associates, Mahwah (2003)

    Google Scholar 

  22. Johnson, C., Hanson, C. (eds.): Visualization Handbook. Kolam Publishing (2004)

    Google Scholar 

  23. Keim, D., Ertl, T.: Scientific visualization (in german). Information Technology 46(3), 148–153 (2004)

    Google Scholar 

  24. Keim, D., Ward, M.: Visual Data Mining Techniques (chapter 11). Springer, New York (2003)

    Google Scholar 

  25. Keim, D.A., Ankerst, M., Kriegel, H.-P.: Recursive pattern: A technique for visualizing very large amounts of data. In: VIS ’95: Proceedings of the 6th conference on Visualization ’95, Washington, DC, USA, p. 279. IEEE Computer Society Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  26. Keim, D.A., Panse, C., Sips, M., North, S.C.: Pixel based visual data mining of geo-spatial data. Computers &Graphics 28(3), 327–344 (2004)

    Article  Google Scholar 

  27. Kerren, A., Stasko, J.T., Fekete, J.-D., North, C.J. (eds.): Information Visualization. LNCS, vol. 4950. Springer, Heidelberg (2008)

    Google Scholar 

  28. Krúger, J., Schneider, J., Westermann, R.: Clearview: An interactive context preserving hotspot visualization technique. IEEE Transactions on Visualization and Computer Graphics 12(5), 941–948 (2006)

    Article  Google Scholar 

  29. Maimon, O., Rokach, L. (eds.): The Data Mining and Knowledge Discovery Handbook. Springer, Heidelberg (2005)

    Google Scholar 

  30. Meliou, A., Chu, D., Guestrin, C., Hellerstein, J., Hong, W.: Data gathering tours in sensor networks. In: IPSN (2006)

    Google Scholar 

  31. Mitchell, T.M.: Machine Learning. McGraw-Hill, Berkeley (1997)

    MATH  Google Scholar 

  32. Naumann, F., Bilke, A., Bleiholder, J., Weis, M.: Data fusion in three steps: Resolving schema, tuple, and value inconsistencies. IEEE Data Eng. Bull. 29(2), 21–31 (2006)

    Google Scholar 

  33. North, C.: Toward measuring visualization insight. IEEE Comput. Graph. Appl. 26(3), 6–9 (2006)

    Article  Google Scholar 

  34. Perner, P. (ed.): Data Mining on Multimedia Data. LNCS, vol. 2558. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  35. Schumann, H., Müller, W.: Visualisierung - Grundlagen und allgemeine Methoden. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  36. Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph. 11(1), 92–99 (1992)

    Article  MATH  Google Scholar 

  37. Shneiderman, B., Plaisant, C.: Designing the User Interface. Addison-Wesley, Reading (2004)

    Google Scholar 

  38. Spence, R.: Information Visualization. ACM Press, New York (2001)

    Google Scholar 

  39. Thomas, J.J., Cook, K.A.: Illuminating the Path. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  40. Tricoche, X., Scheuermann, G., Hagen, H.: Tensor topology tracking: A visualization method for time-dependent 2d symmetric tensor fields. Comput. Graph. Forum 20(3) (2001)

    Google Scholar 

  41. Unwin, A., Theus, M., Hofmann, H.: Graphics of Large Datasets: Visualizing a Million (Statistics and Computing). Springer, New York (2006)

    MATH  Google Scholar 

  42. van Wijk, J.J.: The value of visualization. In: IEEE Visualization, p. 11 (2005)

    Google Scholar 

  43. Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In: CIDR, pp. 262–276 (2005)

    Google Scholar 

  44. Yi, J.S., Kang, Y.a., Stasko, J.T., Jacko, J.A.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1224–1231 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Kerren John T. Stasko Jean-Daniel Fekete Chris North

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keim, D., Andrienko, G., Fekete, JD., Görg, C., Kohlhammer, J., Melançon, G. (2008). Visual Analytics: Definition, Process, and Challenges. In: Kerren, A., Stasko, J.T., Fekete, JD., North, C. (eds) Information Visualization. Lecture Notes in Computer Science, vol 4950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70956-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70956-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70955-8

  • Online ISBN: 978-3-540-70956-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics