Abstract
This paper deals with the symbolic representation of a DNA sequence. As indicator it is taken a complex function. A DNA sequence is investigated by using a family of wavelets. The existence of a fractal shape, patterns and symmetries are eventually shown.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Altaiski, M., Mornev, O., Polozov, R.: Wavelet analysis of DNA sequence. Genetic Analysis 12, 165–168 (1996)
Arneado, A., D’Aubenton-Carafa, Y., Audit, B., Bacry, E., Muzy, J.F., Thermes, C.: What can we learn with wavelets about DNA sequences? Physica A 249, 439–448 (1998)
Audit, B., Vaillant, C., Arneodo, A., d’Aubenton-Carafa, Y., Thermes, C.: Long range Correlations between DNA Bending Sites: Relation to the Structure and Dynamics of Nucleosomes. JMB, J. Mol. Biol. 316, 903–918 (2002)
Berger, J.A., Mitra, S.K., Carli, M., Neri, A.: Visualization and analysis of DNA sequences using DNA walks. Journal of The Franklin Institutes 341, 37–53 (2004)
Cattani, C.: Haar Wavelet based Technique for Sharp Jumps Classification. Mathematical Computer Modelling 39, 255–279 (2004)
Cattani, C.: Haar wavelets based technique in evolution problems. Proc. Estonian Acad. of Sciences, Phys. Math. 53(1), 45–63 (2004)
Cattani, C., Rushchitsky, J.J.: Wavelet and Wave Analysis as applied to Materials with Micro or Nanostructure. Series on Advances in Mathematics for Applied Sciences, p. 74. World Scientific, Singapore (2007)
Cristea, P.D.: Large scale features in DNA genomic signals. Signal Processing 83, 871–888 (2003)
Dodin, G., Vandergheynst, P., Levoir, P., Cordier, C., Marcourt, L.: Fourier and Wavelet Transform Analysis, a Tool for Visualizing Regular Patterns in DNA Sequences. J. Theor. Biol. 206, 323–326 (2000)
Gee, H.: A journey into the genome: what’s there. Nature 12 (February 2001), http://www.nature.com/nsu/010215/010215-3.html
The Genome Data Base, http://gdbwww.gdb.org/ , Genome Browser, http://genome.ucsc.edu , European Informatics Institute, http://www.ebl.ac.uk , Ensembl, http://www.ensembl.org
Herzel, H., Trifonov, E.N., Weiss, O., Groe, I.: Interpreting correlations in biosequences. Physica A 249, 449–459 (1998)
Li, W.: The study of correlation structures of DNA sequences: a critical review, vol. 21(4), pp. 257–271 (1997)
Murray, K.B., Gorse, D., Thornton, J.M.: Wavelet Transform for the characterization and detection of repeating motifs. JMB, J. Mol. Biol. 316, 341–363 (2002)
Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)
Tsonis, A.A., Kumar, P., Elsner, J.B., Tsonis, P.A.: Wavelet Analysis of DNA sequences. Physical Review E 53, 1828–1834 (1996)
Vaidyanathan, P.P., Yoon, B.-J.: The role of signal-processing concepts in genomics and proteomics. Journal of The Franklin Institute 341, 111–135 (2004)
Voss, R.F.: Evolution of Long-Range Fractal Correlations and 1/f Noise in DNA Base Sequences. Physical Review Letters 68(25), 3805–3808 (1992)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cattani, C. (2008). Complex Representation of DNA Sequences. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds) Bioinformatics Research and Development. BIRD 2008. Communications in Computer and Information Science, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70600-7_42
Download citation
DOI: https://doi.org/10.1007/978-3-540-70600-7_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70598-7
Online ISBN: 978-3-540-70600-7
eBook Packages: Computer ScienceComputer Science (R0)