Gene Machine© – A Hardware/Software Platform for Analyzing Genome Data | SpringerLink
Skip to main content

Gene Machine© – A Hardware/Software Platform for Analyzing Genome Data

  • Conference paper
Bioinformatics Research and Development (BIRD 2008)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 13))

Included in the following conference series:

  • 727 Accesses

Abstract

Gene Machine© is a reconfigurable hardware/software architecture which can be used in studying a variety of problems in the field of computational biology. The key architectural features of Gene Machine© are a) hardware implementation of nth order left-to-right Markov Model where the user ca n specify the number of states of the model and the order of the Markov model; b) cache memory for data input/output; c) shift, and logical instructions which operate at the singleton or set level, and d) floating point and integer arithmetic operations, and variable length operands whose lengths are based on the semantics of the input data. Gene Machine© can be programmed to perform a diverse set of computations such as nucleotide and protein sequence comparisons, pair wise and multiple sequence alignments, and secondary and tertiary structure predictions for DNA, RNA and protein sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hood, L.: Systems Biology and Medicine in the 21st century: Dealing with Complexity. In: Microsoft e-Science Workshop, Johns Hopkins University (October 2006)

    Google Scholar 

  2. Cardelli, L.: Abstract Machines of Systems Biology. In: Priami, C., Merelli, E., Gonzalez, P., Omicini, A. (eds.) Transactions on Computational Systems Biology III. LNCS (LNBI), vol. 3737, pp. 145–168. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Regev, A., Shapiro, E.: Cellular Abstractions: Cells as Computation. Nature 419, 343 (2002)

    Article  Google Scholar 

  4. Benenson, Y., et al.: An Autonomous Molecular Computer for Logical Control of Gene Expression. Nature 429, 423–429 (2004)

    Article  Google Scholar 

  5. Needleman, S., Wunsch, C.: A General Method Applicable to the Search for Similarities in the Amino-acid Sequence of Two Proteins. Journal of Molecular Biology 48, 443–453 (1970)

    Article  Google Scholar 

  6. Higgins, D.G., Sharp, P.M.: CLUSTAL: A package for performing multiple sequence alignment on a microcomputer. Gene. 73, 237–244 (1988)

    Article  Google Scholar 

  7. Altschul, S.F., et al.: A basic local alignment search tool. Journal of Molecular Biology 215, 403–410 (1990)

    Google Scholar 

  8. Fasman, G.D.: Prediction of Protein Structure and the Principles of Protein Conformation. Plenum, New York (1989)

    Google Scholar 

  9. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. In: Proceedings of the National Academy of Sciences USA, vol. 89, pp. 10915–10919 (1992)

    Google Scholar 

  10. Parida, L., et al.: An approximation algorithm for alignment of multiple sequences using motif discovery. Journal of Combinatorial Optimization 3, 247–275 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Henderson, J., Salzberg, S., Fasman, K.H.: Finding Genes in DNA with a Hidden Markov Model. Journal of Computational Biology 4(2), 127–142 (1997)

    Article  Google Scholar 

  12. Baum, L.E., et al.: A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. Annals of Mathematical Statistics 40, 164–171 (1970)

    Article  MathSciNet  Google Scholar 

  13. Kyte, J., Doolittle, R.F.: A Simple Method for Displaying the Hydropathic Character of a Protein. Journal of Molecular Biology 157, 105–132 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mourad Elloumi Josef Küng Michal Linial Robert F. Murphy Kristan Schneider Cristian Toma

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marshall, R. (2008). Gene Machine© – A Hardware/Software Platform for Analyzing Genome Data. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds) Bioinformatics Research and Development. BIRD 2008. Communications in Computer and Information Science, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70600-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70600-7_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70598-7

  • Online ISBN: 978-3-540-70600-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics