Time Complexity and Convergence Analysis of Domain Theoretic Picard Method | SpringerLink
Skip to main content

Time Complexity and Convergence Analysis of Domain Theoretic Picard Method

  • Conference paper
Logic, Language, Information and Computation (WoLLIC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5110))

  • 552 Accesses

Abstract

We present an implementation of the domain-theoretic Picard method for solving initial value problems (IVPs) introduced by Edalat and Pattinson [1]. Compared to Edalat and Pattinson’s implementation, our algorithm uses a more efficient arithmetic based on an arbitrary precision floating-point library. Despite the additional overestimations due to floating-point rounding, we obtain a similar bound on the convergence rate of the produced approximations. Moreover, our convergence analysis is detailed enough to allow a static optimisation in the growth of the precision used in successive Picard iterations. Such optimisation greatly improves the efficiency of the solving process. Although a similar optimisation could be performed dynamically without our analysis, a static one gives us a significant advantage: we are able to predict the time it will take the solver to obtain an approximation of a certain (arbitrarily high) quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Edalat, A., Pattinson, D.: A domain theoretic account of Picard’s theorem. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 494–505. Springer, Heidelberg (2004)

    Google Scholar 

  2. Edalat, A., Pattinson, D.: A domain theoretic account of Euler’s method for solving initial value problems. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 112–121. Springer, Heidelberg (2006)

    Google Scholar 

  3. Farjudian, A., Konečný, M.: Time complexity and convergence analysis of domain theoretic picard method (March 2008), http://www-users.aston.ac.uk/~farjudia/AuxFiles/2008-Picard.pdf

  4. Müller, N.T.: The iRRAM: Exact arithmetic in C++. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Lambov, B.: Reallib: An efficient implementation of exact real arithmetic. Mathematical Structures in Computer Science 17(1), 81–98 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    MATH  Google Scholar 

  7. Edalat, A., Pattinson, D.: Domain theoretic solutions of initial value problems for unbounded vector fields. In: Escardó, M. (ed.) Proc. MFPS XXI. Electr. Notes in Theoret. Comp. Sci, vol. 155, pp. 565–581 (2005)

    Google Scholar 

  8. Rauh, A., Hofer, E.P., Auer, E.: Valencia-ivp: A comparison with other initial value problem solvers. In: CD-Proc. of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN 2006, Duisburg, Germany. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  9. Nedialkov, N.S.: Vnode-lp: A validated solver for initial value problems in ordinary differential equations. Technical Report CAS-06-06-NN, Department of Computing and Software, McMaster University (July 2006)

    Google Scholar 

  10. Makino, K., Berz, M.: Cosy infinity version 9. Nuclear Instruments and Methods A558, 346–350 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wilfrid Hodges Ruy de Queiroz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farjudian, A., Konečný, M. (2008). Time Complexity and Convergence Analysis of Domain Theoretic Picard Method. In: Hodges, W., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2008. Lecture Notes in Computer Science(), vol 5110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69937-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69937-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69936-1

  • Online ISBN: 978-3-540-69937-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics