Bicriteria Approximation Tradeoff for the Node-Cost Budget Problem | SpringerLink
Skip to main content

Bicriteria Approximation Tradeoff for the Node-Cost Budget Problem

  • Conference paper
Algorithm Theory – SWAT 2008 (SWAT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5124))

Included in the following conference series:

  • 710 Accesses

Abstract

We consider an optimization problem consisting of an undirected graph, with cost and profit functions defined on all vertices. The goal is to find a connected subset of vertices with maximum total profit, whose total cost does not exceed a given budget. The best result known prior to this work guaranteed a (2,O(logn)) bicriteria approximation, i.e. the solution’s profit is at least a fraction of \(\frac{1}{O(\log n)}\) of an optimum solution respecting the budget, while its cost is at most twice the given budget. We improve these results and present a bicriteria tradeoff that, given any ε ∈ (0,1], guarantees a \((1+\varepsilon,O(\frac{1}{\varepsilon}\log n))\)-approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marathe, M., Ravi, R., Sundaram, R., Ravi, S., Rosenkrantz, D. (III), H.H.: Bicriteria network design problems. Journal of Algorithms 28(1), 142–171 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Moss, A., Rabani, Y.: Approximation algorithms for constrained node weighted steiner tree problems. SIAM Journal on Computing 37(2), 460–481 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Guha, S., Moss, A., Naor, J., Schieber, B.: Efficient recovery from power outage. In: Proceedings of the 31st ACM Symposium on Theory of Computing, pp. 574–582 (1999)

    Google Scholar 

  4. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner trees. Journal of Algorithms 19(1), 104–114 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feige, U.: Threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Johnson, D., Minkoff, M., Phillips, S.: The prize collecting steiner tree problem: theory and practice. In: Proceedings of the 11th annual ACM-SIAM symposium on Discrete algorithms, pp. 760–769 (2000)

    Google Scholar 

  8. Jain, K., Hajiaghayi, M.: The prize-collecting generalized steiner tree problem via a new approach of primal-dual schema. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 631–640 (2006)

    Google Scholar 

  9. Garg, N.: Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 396–402 (2005)

    Google Scholar 

  10. Ravi, R., Goemans, M.: The constrained minimum spanning tree problem. In: Proceedings of the 5th Scandinavian Workshop on Algorithmic Theory, pp. 66–75 (1996)

    Google Scholar 

  11. Khuller, S., Moss, A., Naor, S.: The budgeted maximum coverage problem. Information Processing Letters 70(1), 39–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd edn. Springer, Heidelberg (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joachim Gudmundsson

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rabani, Y., Scalosub, G. (2008). Bicriteria Approximation Tradeoff for the Node-Cost Budget Problem . In: Gudmundsson, J. (eds) Algorithm Theory – SWAT 2008. SWAT 2008. Lecture Notes in Computer Science, vol 5124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69903-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69903-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69900-2

  • Online ISBN: 978-3-540-69903-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics