Abstract
This paper focuses on an overview of kernel density estimation especially for what concerns the choice of bandwidth and intensity parameters according to local conditions. A case study inherent seismic risk analysis of the old town centre of Potenza hilltop town has been discussed, with particular attention to the evaluation of the possible local amplifying factors. This first integrated application of kernel density maps to analyse seismic damage scenarios with a geostatistical approach allowed to evaluate the local geological, geomorphological and 1857 earthquake macroseismic data, offering a new point of view of civil protection planning. The aim of geostatistical approach is to know seismic risk variability at local level, modelling and visualizing it.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sillverman, B.W., Jones, M.C., Fix, E., Hodges, J.L.: An important contribution to nonparametric discriminant analysis and density estimation. International Statistical Review 57(3), 233–247 (1951)
Rosenblatt, M.: Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Statist. 27, 832–837 (1956)
Cacoullos, T.: Estimation of a Multivariate Density. IEEE Press, New York (1966)
Breiman, L., Meisel, W., Purcell, E.: Variable Kernel Estimates of Multivariate Densities. Technometrics 19, 135–144 (1977)
Abramson, L.S.: On Bandwidth Variation in Kernel Estimates - A Square Root Law. Ann. Stat. 10, 1217–1223 (1982)
Hall, P., Marron, J.S.: Variable Window Width Kernel Estimates of Probability Densities. Probability Theory 80, 37–49 (1988)
Worswick, C.: Adaptation and Inequality: Children of Immigrants in Canadian Schools. Canadian Journal of Economics 37(1), 53–77 (2004)
Price, D.J., Monaghan, J.J.: An Energy-Conserving Formalism or Adaptive Gravitational Force Softening in Smoothed Particle Hydrodynamics and N-body Codes. Mon. Not. R. Astron. Soc. 374, 1347–1358 (2006)
Schregle, R.: Bias Compensation for Photon Maps. Computer graphics 22(4), 729–742 (2003)
Wolf, C.A., Sumner, D.A.: Are Farm Size Distributions Bimodal? Evidence from Kernel Density Estimates of Dairy Farm Size Distribution. Amer. J. Agr. Econ. 83(1), 77–88 (2001)
Portier, K., Tolson, J.K., Roberts, S.M.: Body Weight Distributions for Risk Assessment. Risk analysis 27(1), 11–26 (2007)
Diggle, P.J.: The Statistical Analysis of Point Patterns. Academic Press, London (1983)
Diggle, P.J.: A Kernel Method for Smoothing Point Process Data. Applied Statistics. Journal of the Royal Statistical Society Series C 153, 349–362 (1985)
Brunsdon, C.: Estimating Probability Surfaces for Geographical Points Data: An Adaptive Kernel Algorithm. Computers and Geosciences 21(7), 877–894 (1995)
Chainey, S., Reid, S., Stuart, N.: When is a Hotspot a Hotspot? A Procedure for Creating Statistically Robust Hotspot Maps of Crime. In: Kidner, D., Higgs, G., White, S. (eds.) Innovations in GIS 9: Socio-Economic Applications of Geographic Information Science, pp. 21–36. Taylor and Francis (2002)
Gatrell, A.C., Bailey, T.C., Diggle, P.J., Rowlingson, B.S.: Spatial Point Pattern Analysis and Its Application in Geographical Epidemiology. Transaction of Institute of British Geographer 21, 256–271 (1996)
Wood, J.D., Fisher, P.F., Dykes, J.A., Unwin, D.J.: The Use of the Landscape Metaphor in Understanding Population Data. Environment and Planning B: Planning & Design 26(2), 281–295 (1999)
O’Sullivan, D., Wong, D.W.S.: A Surface-Based Approach to Measuring Spatial Segregation. Geographical Analysis 39, 147–168 (2007)
Bracken, I., Martin, D.: Linkage of the 1981 and 1991 Censuses Using Surface Modelling Concepts. Environment and Planning A 27, 379–390 (1995)
Dixon, K.R., Chapman, J.A.: Harmonic Mean Measure of Animal Activity Areas. Ecology 61, 1040–1044 (1980)
Worton, B.J.: Kernel Methods for Estimating the Utilization Distribution in Home-Range Studies. Ecology 70(1), 164–168 (1989)
Hemson, G., Johson, P., South, A., Kenward, R., Ripley, R., MacDonald, D.: Are Kernel the Mustard? Data From Global Positioning System (GPS) Collars Suggests Problems for Kernel Home-Range Analyses with Least-Squares Cross-Validation. Journal of Animal Ecology 74, 455–463 (2005)
Borruso, G.: Network Density and the Delimitation of Urban Areas. Transaction in GIS 7(2), 177–191 (2003)
Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall, London (1986)
Levine, N.: CrimeStat III: A Spatial Statistics Program for the Analysis of Crime Incident Locations. Ned Levine & Associates, Houston, TX, and the National Institute of Justice, Washington, DC (2004)
Sacks, J., Ylvisaker, D.: Asymptotically Optimum Kernels for Density Estimates at a Point. Annals of Statistics 9, 334–346 (1981)
Miller, H.: A Measurement Theory for Time Geography. Geographical Analysis 37, 17–45 (2005)
Borruso, G.: Network Density Estimation: Analysis of Point Patterns Over a Network. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 126–132. Springer, Heidelberg (2005)
Burt, J.E., Barber., G.M.: Elementary Statistics for Geographers, 2nd edn. The Guilford Press, New York (1996)
Bailey, T.C., Gatrell, A.C.: Interactive Spatial Data Analysis. Longman Higher Education, Harlow (1995)
Epanechnikov, V.A.: Nonparametric Estimation of a Multivariate Probability Density. Theory of Probability and Its Applications 14, 153–158 (1969)
Downs, J.A., Horner, M.W.: Characterising Linear Point Patterns. Proceedings of the GIS Research UK Annual Conference (GISRUK 2007), Maynooth, Ireland (2007)
Jones, M.C., Marron, J.S., Sheather, S.J.: A Brief Survey of Bandwidth Selection for Density Estimation. Journal of the American Statistical Association 91, 401–407 (1996)
Sheather, S.J.: An Improved Data-Based Algorithm for Choosing the Window Width When Estimating the Density at a Point. Computational Statistics and Data Analysis 4, 61–65 (1986)
Hall, P., Sheather, S.J., Jones, M.C., Marron, J.S.: On Optimal Data-Based Bandwidth Selection in Kernel Density Estimation. Biometrika 78, 263–269 (1991)
Hazelton, M.: Optimal Rates for Local Bandwidth Selection. J. Nonparametr. Statist. 7, 57–66 (1996)
Loftsgaarden, D.O., Quesenberry, C.P.: A Nonparametric Estimate of a Multivariate Density Function. Ann. Math. Statist. 36, 1049–1051 (1965)
Clark, P.J., Evans, F.C.: Distance to Nearest Neighbour as a Measure of Spatial Relationships in Populations. Ecology 35, 445–453 (1994)
Cao, R., Cuevas, A., González-Manteiga, W.: A Comparative study of several smoothing methods in density estimation. Computational Statistic and Data Analysis 17, 153–176 (1994)
Wand, M., Jones, M.C.: Kernel Smoothing. Chapman & Hall, London (1995)
Simonoff, J.: Smoothing Methods in Statistics. Springer, New York (1996)
Chiu, S.T.: A comparative Review of Bandwidth Selection for Kernel Density Estimation. Statistica Sinica 6, 129–145 (1996)
Devroye, L., Lugosi, T.: Variable Kernel Estimates: on the Impossibility of Tuning the Parameters. In: Giné, E., Mason, D. (eds.) High-Dimensional Probability, Springer, New York (1994)
Chacón, J.E., Montanero, J., Nogales, A.G., Pérez, P.: On the existence and limit behaviour of the optimal bandwidth in kernel Density Estimation. Statistica Sinica 17, 289–300 (2007)
Murgante, B., Las Casas, G., Danese, M.: Where are the slums? New approaches to urban regeneration. In: Liu, H., Salerno, J., Young, M. (eds.) Social Computing, Behavioral Modeling and Prediction, pp. 176–187. Springer, US (2008)
Hall, P., Marron, J.S.: On the Amount of Noise Inherent in Band-Width Selection for a Kernel Density Estimator. The Annals of Statistics 15, 163–181 (1987)
Hall, P., Hu, T.C., Marron, J.S.: Improved Variable Window Kernel Estimates of Probability Densities. Ann. Statist. 23, 1–10 (1994)
Sain, S.R., Scott, D.W.: On Locally Adaptive Density Estimation. J. Amer. Statist. Assoc. 91, 1525–1534 (1996)
Wu, C.O.: A Cross-Validation Bandwidth Choice for Kernel Density Estimates with Selection Biased Data. Journal of Multivariate Analysis 61, 38–60 (1999)
Havran, V., Herzog, R., Seidel, H.: Fast Final Gathering Via Reverse Photon Mapping. Eurographics 24, 323–333 (2005)
Härdle, W.: Smoothing Techniques with Implementation in S. Springer, New York (1991)
Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S - Plus Illustrations. Oxford Science Publications. Oxford University Press, Oxford (1997)
Murgante, B., Las Casas, G., Danese, M.: The periurban city: Geo-statistical methods for its definition. In: Coors, Rumor, Fendel, Zlatanova (eds.) Urban and Regional Data Management, pp. 473–485. Taylor & Francis Group, London (2008)
O’Sullivan, D., Wong, D.W.S.: A Surface-Based Approach to Measuring Spatial Segregation. Geographical Analysis, 147–168 (2007)
Gizzi, F.T., Lazzari, M., Masini, N., Zotta, C., Danese, M.: Geological-Geophysical and Historical-Macroseismic Data Implemented in a Geodatabase: a GIS Integrated Approach for Seismic Microzonation. The Case-Study of Potenza Urban Area (Southern Italy). Geophysical Research Abstracts vol. 9 (2007) 09522, SRef-ID: 1607-7962/gra/EGU2007-A-09522
Grünthal, G.G.: European Macroseismic Scale 1998. Conseil de l’Europe Cahiers du Centre Européen de Géodynamique et de Séisomologie, Luxembourg vol. 15 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Danese, M., Lazzari, M., Murgante, B. (2008). Kernel Density Estimation Methods for a Geostatistical Approach in Seismic Risk Analysis: The Case Study of Potenza Hilltop Town (Southern Italy). In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69839-5_31
Download citation
DOI: https://doi.org/10.1007/978-3-540-69839-5_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69838-8
Online ISBN: 978-3-540-69839-5
eBook Packages: Computer ScienceComputer Science (R0)