Kernel Density Estimation Methods for a Geostatistical Approach in Seismic Risk Analysis: The Case Study of Potenza Hilltop Town (Southern Italy) | SpringerLink
Skip to main content

Kernel Density Estimation Methods for a Geostatistical Approach in Seismic Risk Analysis: The Case Study of Potenza Hilltop Town (Southern Italy)

  • Conference paper
Computational Science and Its Applications – ICCSA 2008 (ICCSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5072))

Included in the following conference series:

Abstract

This paper focuses on an overview of kernel density estimation especially for what concerns the choice of bandwidth and intensity parameters according to local conditions. A case study inherent seismic risk analysis of the old town centre of Potenza hilltop town has been discussed, with particular attention to the evaluation of the possible local amplifying factors. This first integrated application of kernel density maps to analyse seismic damage scenarios with a geostatistical approach allowed to evaluate the local geological, geomorphological and 1857 earthquake macroseismic data, offering a new point of view of civil protection planning. The aim of geostatistical approach is to know seismic risk variability at local level, modelling and visualizing it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sillverman, B.W., Jones, M.C., Fix, E., Hodges, J.L.: An important contribution to nonparametric discriminant analysis and density estimation. International Statistical Review 57(3), 233–247 (1951)

    Google Scholar 

  2. Rosenblatt, M.: Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Statist. 27, 832–837 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cacoullos, T.: Estimation of a Multivariate Density. IEEE Press, New York (1966)

    Google Scholar 

  4. Breiman, L., Meisel, W., Purcell, E.: Variable Kernel Estimates of Multivariate Densities. Technometrics 19, 135–144 (1977)

    Article  MATH  Google Scholar 

  5. Abramson, L.S.: On Bandwidth Variation in Kernel Estimates - A Square Root Law. Ann. Stat. 10, 1217–1223 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hall, P., Marron, J.S.: Variable Window Width Kernel Estimates of Probability Densities. Probability Theory 80, 37–49 (1988)

    MATH  MathSciNet  Google Scholar 

  7. Worswick, C.: Adaptation and Inequality: Children of Immigrants in Canadian Schools. Canadian Journal of Economics 37(1), 53–77 (2004)

    Article  Google Scholar 

  8. Price, D.J., Monaghan, J.J.: An Energy-Conserving Formalism or Adaptive Gravitational Force Softening in Smoothed Particle Hydrodynamics and N-body Codes. Mon. Not. R. Astron. Soc. 374, 1347–1358 (2006)

    Article  Google Scholar 

  9. Schregle, R.: Bias Compensation for Photon Maps. Computer graphics 22(4), 729–742 (2003)

    Article  Google Scholar 

  10. Wolf, C.A., Sumner, D.A.: Are Farm Size Distributions Bimodal? Evidence from Kernel Density Estimates of Dairy Farm Size Distribution. Amer. J. Agr. Econ. 83(1), 77–88 (2001)

    Article  Google Scholar 

  11. Portier, K., Tolson, J.K., Roberts, S.M.: Body Weight Distributions for Risk Assessment. Risk analysis 27(1), 11–26 (2007)

    Article  Google Scholar 

  12. Diggle, P.J.: The Statistical Analysis of Point Patterns. Academic Press, London (1983)

    Google Scholar 

  13. Diggle, P.J.: A Kernel Method for Smoothing Point Process Data. Applied Statistics. Journal of the Royal Statistical Society Series C 153, 349–362 (1985)

    Google Scholar 

  14. Brunsdon, C.: Estimating Probability Surfaces for Geographical Points Data: An Adaptive Kernel Algorithm. Computers and Geosciences 21(7), 877–894 (1995)

    Article  Google Scholar 

  15. Chainey, S., Reid, S., Stuart, N.: When is a Hotspot a Hotspot? A Procedure for Creating Statistically Robust Hotspot Maps of Crime. In: Kidner, D., Higgs, G., White, S. (eds.) Innovations in GIS 9: Socio-Economic Applications of Geographic Information Science, pp. 21–36. Taylor and Francis (2002)

    Google Scholar 

  16. Gatrell, A.C., Bailey, T.C., Diggle, P.J., Rowlingson, B.S.: Spatial Point Pattern Analysis and Its Application in Geographical Epidemiology. Transaction of Institute of British Geographer 21, 256–271 (1996)

    Article  Google Scholar 

  17. Wood, J.D., Fisher, P.F., Dykes, J.A., Unwin, D.J.: The Use of the Landscape Metaphor in Understanding Population Data. Environment and Planning B: Planning & Design 26(2), 281–295 (1999)

    Article  Google Scholar 

  18. O’Sullivan, D., Wong, D.W.S.: A Surface-Based Approach to Measuring Spatial Segregation. Geographical Analysis 39, 147–168 (2007)

    Article  Google Scholar 

  19. Bracken, I., Martin, D.: Linkage of the 1981 and 1991 Censuses Using Surface Modelling Concepts. Environment and Planning A 27, 379–390 (1995)

    Article  Google Scholar 

  20. Dixon, K.R., Chapman, J.A.: Harmonic Mean Measure of Animal Activity Areas. Ecology 61, 1040–1044 (1980)

    Article  Google Scholar 

  21. Worton, B.J.: Kernel Methods for Estimating the Utilization Distribution in Home-Range Studies. Ecology 70(1), 164–168 (1989)

    Article  Google Scholar 

  22. Hemson, G., Johson, P., South, A., Kenward, R., Ripley, R., MacDonald, D.: Are Kernel the Mustard? Data From Global Positioning System (GPS) Collars Suggests Problems for Kernel Home-Range Analyses with Least-Squares Cross-Validation. Journal of Animal Ecology 74, 455–463 (2005)

    Google Scholar 

  23. Borruso, G.: Network Density and the Delimitation of Urban Areas. Transaction in GIS 7(2), 177–191 (2003)

    Article  Google Scholar 

  24. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  25. Levine, N.: CrimeStat III: A Spatial Statistics Program for the Analysis of Crime Incident Locations. Ned Levine & Associates, Houston, TX, and the National Institute of Justice, Washington, DC (2004)

    Google Scholar 

  26. Sacks, J., Ylvisaker, D.: Asymptotically Optimum Kernels for Density Estimates at a Point. Annals of Statistics 9, 334–346 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  27. Miller, H.: A Measurement Theory for Time Geography. Geographical Analysis 37, 17–45 (2005)

    Article  Google Scholar 

  28. Borruso, G.: Network Density Estimation: Analysis of Point Patterns Over a Network. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 126–132. Springer, Heidelberg (2005)

    Google Scholar 

  29. Burt, J.E., Barber., G.M.: Elementary Statistics for Geographers, 2nd edn. The Guilford Press, New York (1996)

    Google Scholar 

  30. Bailey, T.C., Gatrell, A.C.: Interactive Spatial Data Analysis. Longman Higher Education, Harlow (1995)

    Google Scholar 

  31. Epanechnikov, V.A.: Nonparametric Estimation of a Multivariate Probability Density. Theory of Probability and Its Applications 14, 153–158 (1969)

    Article  Google Scholar 

  32. Downs, J.A., Horner, M.W.: Characterising Linear Point Patterns. Proceedings of the GIS Research UK Annual Conference (GISRUK 2007), Maynooth, Ireland (2007)

    Google Scholar 

  33. Jones, M.C., Marron, J.S., Sheather, S.J.: A Brief Survey of Bandwidth Selection for Density Estimation. Journal of the American Statistical Association 91, 401–407 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sheather, S.J.: An Improved Data-Based Algorithm for Choosing the Window Width When Estimating the Density at a Point. Computational Statistics and Data Analysis 4, 61–65 (1986)

    Article  Google Scholar 

  35. Hall, P., Sheather, S.J., Jones, M.C., Marron, J.S.: On Optimal Data-Based Bandwidth Selection in Kernel Density Estimation. Biometrika 78, 263–269 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hazelton, M.: Optimal Rates for Local Bandwidth Selection. J. Nonparametr. Statist. 7, 57–66 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  37. Loftsgaarden, D.O., Quesenberry, C.P.: A Nonparametric Estimate of a Multivariate Density Function. Ann. Math. Statist. 36, 1049–1051 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  38. Clark, P.J., Evans, F.C.: Distance to Nearest Neighbour as a Measure of Spatial Relationships in Populations. Ecology 35, 445–453 (1994)

    Article  Google Scholar 

  39. Cao, R., Cuevas, A., González-Manteiga, W.: A Comparative study of several smoothing methods in density estimation. Computational Statistic and Data Analysis 17, 153–176 (1994)

    Article  MATH  Google Scholar 

  40. Wand, M., Jones, M.C.: Kernel Smoothing. Chapman & Hall, London (1995)

    MATH  Google Scholar 

  41. Simonoff, J.: Smoothing Methods in Statistics. Springer, New York (1996)

    MATH  Google Scholar 

  42. Chiu, S.T.: A comparative Review of Bandwidth Selection for Kernel Density Estimation. Statistica Sinica 6, 129–145 (1996)

    MATH  MathSciNet  Google Scholar 

  43. Devroye, L., Lugosi, T.: Variable Kernel Estimates: on the Impossibility of Tuning the Parameters. In: Giné, E., Mason, D. (eds.) High-Dimensional Probability, Springer, New York (1994)

    Google Scholar 

  44. Chacón, J.E., Montanero, J., Nogales, A.G., Pérez, P.: On the existence and limit behaviour of the optimal bandwidth in kernel Density Estimation. Statistica Sinica 17, 289–300 (2007)

    MATH  MathSciNet  Google Scholar 

  45. Murgante, B., Las Casas, G., Danese, M.: Where are the slums? New approaches to urban regeneration. In: Liu, H., Salerno, J., Young, M. (eds.) Social Computing, Behavioral Modeling and Prediction, pp. 176–187. Springer, US (2008)

    Chapter  Google Scholar 

  46. Hall, P., Marron, J.S.: On the Amount of Noise Inherent in Band-Width Selection for a Kernel Density Estimator. The Annals of Statistics 15, 163–181 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  47. Hall, P., Hu, T.C., Marron, J.S.: Improved Variable Window Kernel Estimates of Probability Densities. Ann. Statist. 23, 1–10 (1994)

    Article  MathSciNet  Google Scholar 

  48. Sain, S.R., Scott, D.W.: On Locally Adaptive Density Estimation. J. Amer. Statist. Assoc. 91, 1525–1534 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wu, C.O.: A Cross-Validation Bandwidth Choice for Kernel Density Estimates with Selection Biased Data. Journal of Multivariate Analysis 61, 38–60 (1999)

    Article  Google Scholar 

  50. Havran, V., Herzog, R., Seidel, H.: Fast Final Gathering Via Reverse Photon Mapping. Eurographics 24, 323–333 (2005)

    Google Scholar 

  51. Härdle, W.: Smoothing Techniques with Implementation in S. Springer, New York (1991)

    MATH  Google Scholar 

  52. Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S - Plus Illustrations. Oxford Science Publications. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  53. Murgante, B., Las Casas, G., Danese, M.: The periurban city: Geo-statistical methods for its definition. In: Coors, Rumor, Fendel, Zlatanova (eds.) Urban and Regional Data Management, pp. 473–485. Taylor & Francis Group, London (2008)

    Google Scholar 

  54. O’Sullivan, D., Wong, D.W.S.: A Surface-Based Approach to Measuring Spatial Segregation. Geographical Analysis, 147–168 (2007)

    Google Scholar 

  55. Gizzi, F.T., Lazzari, M., Masini, N., Zotta, C., Danese, M.: Geological-Geophysical and Historical-Macroseismic Data Implemented in a Geodatabase: a GIS Integrated Approach for Seismic Microzonation. The Case-Study of Potenza Urban Area (Southern Italy). Geophysical Research Abstracts vol. 9 (2007) 09522, SRef-ID: 1607-7962/gra/EGU2007-A-09522

    Google Scholar 

  56. Grünthal, G.G.: European Macroseismic Scale 1998. Conseil de l’Europe Cahiers du Centre Européen de Géodynamique et de Séisomologie, Luxembourg vol. 15 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danese, M., Lazzari, M., Murgante, B. (2008). Kernel Density Estimation Methods for a Geostatistical Approach in Seismic Risk Analysis: The Case Study of Potenza Hilltop Town (Southern Italy). In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69839-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69839-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69838-8

  • Online ISBN: 978-3-540-69839-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics