Abstract
This work represents the first step toward a DDDAS for Wildland Fire Prediction where our main efforts are oriented to take advantage of the computing power provided by High Performance Computing systems to, on the one hand, propose computational data driven steering strategies to overcome input data uncertainty and, on the other hand, to reduce the execution time of the whole prediction process in order to be reliable during real-time crisis. In particular, this work is focused on the description of a Dynamic Data Driven Genetic Algorithm used as steering strategy to automatic adjust certain input data values of forest fire simulators taking into account the underlying propagation model and the real fire behavior.
This work has been supported by the MEC-Spain under contracts TIN 2004-03388 and TIN 2007-64974.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Abdalhaq, B.: A methodology to enhance the Prediction of Forest Fire Propagation. Ph. D Thesis. Universitat Autònoma de Barcelona (Spain) (June 2004)
Allen, G.: Building a Dynamic Data Driven Application System for Hurricane Forescasting. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 1034–1041. Springer, Heidelberg (2007)
Anderson, H.E.: Aids to Determining Fuel Models For Estimating Fire Behaviour Intermountain Forest and Range Experiment Station Ogden, UT 84401. General Technical Report INT.122 (April 2002)
Andrews, P.L.: BEHAVE: Fire Behavior prediction and modeling systems - Burn subsystem, part 1. General Technical Report INT-194. Odgen, UT, US Department of Agriculture, Forest Service, Intermountain Research Station, p. 130 (1986)
Bevins, C.D.: FireLib User Manual & Technical Reference (1996) (accesed January 2006), http://www.fire.org
Bianchini, G.: Wildland Fire Prediction based on Statistical Analysis of Multiple Solutions. Ph. D Thesis. Universitat Autònoma de Barcelona (Spain) (July 2006)
Dynamic Data Driven Application Systems homepage (November 2007), http://www.dddas.org
Denham, M.: Predicción de Incendios Forestales Basada en Algoritmos Evolutivos Guiados por los Datos, MsC thesis. Universitat Autònoma de Barcelona (Spain) (July 2007)
FIRE.ORG - Public Domain Software for the Wildland fire Community (acceded May 2007), http://www.fire.org
Mandel, J., et al.: A Dynamic Data Driven Wildland Fire Model. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 1042–1049. Springer, Heidelberg (2007)
Canarias 7 (accessed October 2007), http://www.canarias7.es
El País (accessed October 2007), http://www.elpais.com
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Denham, M., Cortés, A., Margalef, T., Luque, E. (2008). Applying a Dynamic Data Driven Genetic Algorithm to Improve Forest Fire Spread Prediction. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2008. ICCS 2008. Lecture Notes in Computer Science, vol 5103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69389-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-69389-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69388-8
Online ISBN: 978-3-540-69389-5
eBook Packages: Computer ScienceComputer Science (R0)