Making a Robot Dance to Music Using Chaotic Itinerancy in a Network of FitzHugh-Nagumo Neurons | SpringerLink
Skip to main content

Making a Robot Dance to Music Using Chaotic Itinerancy in a Network of FitzHugh-Nagumo Neurons

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4985))

Included in the following conference series:

Abstract

We propose a technique to make a robot execute free and solitary dance movements on music, in a manner which simulates the dynamic alternations between synchronisation and autonomy typically observed in human behaviour. In contrast with previous approaches, we preprogram neither the dance patterns nor their alternation, but rather build in basic dynamics in the robot, and let the behaviour emerge in a seemingly autonomous manner. The robot motor commands are generated in real-time by converting the output of a neural network processing a sequence of pulses corresponding to the beats of the music being danced to. The spiking behaviour of individual neurons is controlled by a biologically-inspired model (FitzHugh-Nagumo). Under appropriate parameters, the network generates chaotic itinerant behaviour among low-dimensional local attractors. A robot controlled this way exhibits a variety of motion styles, some being periodic and strongly coupled to the musical rhythm and others being more independent, as well as spontaneous jumps from one style of motion to the next. The resulting behaviour is completely deterministic (as the solution of a non-linear dynamical system), adaptive to the music being played, and believed to be an interesting compromise between synchronisation and autonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bradley, E., Stuart, J.: Using chaos to generate variations on movement sequences. Chaos 8, 800–807 (1998)

    Article  MATH  Google Scholar 

  2. Fitzhugh, R.: Impulses and psychologial states in theoretical models of nerve membrane. BioPhys. Journal 1(1), 445–466 (1961)

    Article  MathSciNet  Google Scholar 

  3. Godoy, R., Haga, E., Jensenius, A.R.: Exploring music-related gestures by sound-tracing. - a preliminary study. In: 2nd ConGAS International Symposium on Gesture Interfaces for Multimedia Systems, Leeds (UK) (2006)

    Google Scholar 

  4. Goto, M.: An audio-based real-time beat tracking system for music with or without drum-sounds. Journal of New Music Research 30(2), 159–171 (2001)

    Article  Google Scholar 

  5. Gouyon, F., Klapuri, A., Dixon, S., Alonso, M., Tzanetakis, G., Uhle, C., Cano, P.: An experimental comparison of audio tempo induction algorithms. IEEE Transactions on Audio, Speech and Language Processing 14(5), 1832–1844 (2006)

    Article  Google Scholar 

  6. Ikeda, K., Otsuka, K., Matsumoto, K.: Maxwell bloch turbulence. Prog. Theor. Phys (supplement) 99, 295–324 (1989)

    Google Scholar 

  7. Ikegami, T.: Simulating active perception and mental imagery with embodied chaotic itinerancy. Journal of Consciousness Studies 14(7), 111–125 (2007)

    Google Scholar 

  8. Kaneko, K., Tsuda, I.: Chaotic itinerancy. Chaos 13(3), 926–936 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kay, L.: A challenge to chaotic itinerancy from brain dynamics. Chaos 13(3), 1057–1066 (2003)

    Article  Google Scholar 

  10. Kostova, T., Ravindran, R., Schonbek, M.: Fitzhugh nagumo revisited: Types of bifurcations, periodical forcing and stability regions by a lyapunov functional. International Journal of Bifurcation and Chaos 14(3), 913–925 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kosuge, K., Hayashi, T., Hirata, Y., Tobiyama, R.: Dance partner robot -ms dancerr-. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2003)

    Google Scholar 

  12. Michalowski, M.P., Sabanovic, S., Kozima, H.: A dancing robot for rhythmic social interaction. In: Proceedings of HRI (2007)

    Google Scholar 

  13. Nakazawa, A., Nakaoka, S., Ikeuchi, K.: Imitating human dance motions through motion structure analysis. In: Proceedings of International Conference on Intelligent Robots and Systems (2002)

    Google Scholar 

  14. Pachet, F.: On the Design of Flow Machines. In: The Future of Learning, IOS Press, Amsterdam (2004)

    Google Scholar 

  15. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes, The Art of Scientific Computing. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  16. Scheirer, E.: Tempo and beat analysis of acoustic musical signals. Journal of the Acoustic Society of America 103(1), 588–601 (1998)

    Article  Google Scholar 

  17. Takahashi, H., Horibe, N., Ikegami, T., Shimada, M.: Analyzing house fly’s exploration behavior with ar methods. Journal of the Japanese Phycis Society (submitted, 2007)

    Google Scholar 

  18. Tanaka, F., Suzuki, H.: Dance interaction with qrio: A case study for non-boring interaction by using an entrainment ensemble model. In: Proceedings of the 2004 IEEE International Workshop on Robot and Human Interactive Communication (2004)

    Google Scholar 

  19. Wanderley, M.M., Vines, B., Middleton, N., McKay, C., Hatch, W.: The musical significance of clarinetists’ ancillary gestures: An exploration of the field. Journal of New Music Research 34(1), 97–113 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aucouturier, JJ., Ogai, Y., Ikegami, T. (2008). Making a Robot Dance to Music Using Chaotic Itinerancy in a Network of FitzHugh-Nagumo Neurons. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69162-4_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69159-4

  • Online ISBN: 978-3-540-69162-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics