A Framework for Multi-view Gender Classification | SpringerLink
Skip to main content

A Framework for Multi-view Gender Classification

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Included in the following conference series:

  • 1322 Accesses

Abstract

This paper proposes a novel framework for dealing with multi-view gender classification problems and shows its feasibility on the CAS-PEAL database of face images. The framework consists of three stages. First, wavelet transform is used to intensify multi-scale edges and remove effects of illumination and noises. Second, instead of traditional Euclidean distance, image Euclidean distance which considers the spatial relationships between pixels is used to measure the distance between images. Last, a two layer support vector machine is proposed, which divides face images into different poses in the first layer, and then recognizes the gender with different support vector machines in the second layer. Compared with traditional support vector machines and min-max modular network with support vector machines, our method achieves higher classification accuracy and spends less training and test time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gutta, S., Huang, J., Jonathon, P., Wechsler, H.: Mixture of experts for classification of gender, ethnic origin, andpose of human faces. IEEE Transactions on Neural Networks 11(4), 948–960 (2000)

    Article  Google Scholar 

  2. Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 707–711 (2002)

    Article  Google Scholar 

  3. Khan, A.: Combination and optimization of classifiers in gender classification using genetic programming. International Journal of Knowledge-Based and Intelligent Engineering Systems 9(1), 1–11 (2005)

    Google Scholar 

  4. Lian, H.C., Lu, B.L., Takikawa, E., Hosoi, S.: Gender recognition using a min-max modular support vector machine. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 438–441. Springer, Heidelberg (2005)

    Google Scholar 

  5. Lian, H.C., Lu, B.L.: Multi-view gender classification using local binary patterns and support vector machines. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 202–209. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Luo, J., Lu, B.L.: Gender recognition using a min-max modular support vector machine with equal clustering. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 210–215. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Kim, H.C., Kim, D., Ghahramani, Z., Bang, S.Y.: Appearance-based gender classification with Gaussian processes. Pattern Recognition Letters 27(6), 618–626 (2006)

    Article  Google Scholar 

  8. Balci, K., Atalay, V.: PCA for gender estimation: Which eigenvectors contribute. Proceedings of Sixteenth International Conference on Pattern Recognition 3, 363–366 (2002)

    Google Scholar 

  9. Jain, A., Huang, J.: Integrating independent components and linear discriminant analysis for gender classification. In: Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 159–163 (2004)

    Google Scholar 

  10. OToole, A.J., Deffenbacher, K.A., Valentin, D., McKee, K., Huff, D., Abdi, H.: The perception of face gender: The role of stimulus structure in recognition and classification. Memory and Cognition 26(1), 146–160 (1998)

    Google Scholar 

  11. Cottrell, G.W., Metcalfe, J.: EMPATH: face, emotion, and gender recognition using holons. In: Proceedings of the 1990 conference on Advances in neural information processing systems, pp. 564–571 (1990)

    Google Scholar 

  12. Edelman, B., Valentin, D., Abdi, H.: Sex classification of face areas: how well can a linear neural network predict human performance. Journal of Biological System 6(3), 241–264 (1998)

    Article  Google Scholar 

  13. Golomb, B., Lawrence, D., Sejnowski, T.: SexNet: A neural network identifies sex from human faces. In: Proceedings of the 1990 conference on Advances in neural information processing, pp. 572–577 (1990)

    Google Scholar 

  14. Gao, W., Cao, B., Shan, S., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL large-scale Chinese face database and baseline evaluations. Technical report of JDL (2004), http://www.jdl.ac.cn/peal/pealtr.pdf

  15. Wang, L., Zhang, Y., Feng, J.: On the Euclidean distance of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1334–1339 (2005)

    Article  Google Scholar 

  16. Mallat, S.: Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing 37(12), 2091–2110 (1989)

    Article  Google Scholar 

  17. Cohen, A., Kovacevic, J.: Wavelets: the mathematical background. Proceedings of the IEEE 84(4), 514–522 (1996)

    Article  Google Scholar 

  18. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(7), 710–732 (1992)

    Article  Google Scholar 

  19. Vapnik, V.N.: Statistical learning theory. Wiley, New York (1998)

    MATH  Google Scholar 

  20. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods: support vector learning, 185–208 (1999)

    Google Scholar 

  21. Huang, J., Shao, X., Wechsler, H.: Face pose discrimination using support vector machines (SVM). In: Fourteenth International Conference on Pattern Recognition, vol. 1, pp. 154–156 (1998)

    Google Scholar 

  22. Lu, B.L., Wang, K.A., Utiyama, M., Isahara, H.: A part-versus-part method for massively parallel training of support vector machines. In: 2004 IEEE International Joint Conference on Neural Networks, vol. 1, pp. 735–740 (2004)

    Google Scholar 

  23. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, J., Lu, BL. (2008). A Framework for Multi-view Gender Classification. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics