A Physically Realistic Voxel-Based Method for Haptic Simulation of Bone Machining | SpringerLink
Skip to main content

A Physically Realistic Voxel-Based Method for Haptic Simulation of Bone Machining

  • Conference paper
Haptics: Perception, Devices and Scenarios (EuroHaptics 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5024))

  • 3112 Accesses

Abstract

This paper models force of machining a piece of bone by a spherical rotating tool for haptic simulation of bone surgery. The cutting edges of the spherical tool are modeled as a set of infinitesimal cutting elements. Each cutting element in contact with the bone piece undergoes an orthogonal cutting process. The force of cutting is obtained by summing up the forces of each element of the engaged cutting element. The force of each cutting element is related to the size of the chip formed at the bone piece due to a fracture process. The coefficients that relate the chip thickness to the cutting forces are derived from the experimental results. A voxel-based method is developed to simulate chip formation and the force of bone machining. The simulation results show a close force correlation between the voxel-based method and an analytical force model at certain loading conditions. This voxel-based method offers a physics-based continuous force model for bone machining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mahvash, M., Hayward, V.: High Fidelity Haptic Synthesis of Contact with Deformable Bodies. IEEE Comp. Graphics and App. 24(2), 48–55 (2004)

    Article  Google Scholar 

  2. Bryan, J., Stredney, D., Wiet, G., Sessanna, D.: Virtual Temporal Bone Dissection: A Case Study. In: Proc. of IEEE Visualization, pp. 497–500 (October 2001)

    Google Scholar 

  3. Petersik, A., Pflesser, B., Tiede, U., Hoehne, K.H., Leuwer, R.: Haptic Volume Intraction with Anatomic Modelsat Sub-Voxel Resolution. In: Proc. 10th Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Sys., pp. 66–72 (2002)

    Google Scholar 

  4. Morris, D., Sewell, C., Barbagli, F., Blevins, N., Girod, S., Salisbury, K.: Visuohaptic Simulation of Bone Surgery for Training and Evaluation. IEEE Computer Graphics and Applications 26(4), 48–57 (2006)

    Article  Google Scholar 

  5. Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., Zorcolo, A.: A Multiprocessor Decoupled System for the Simulation of Temporal Bone Surgery. Computing and Visualization in Science 5(1), 35–43 (2002)

    Article  MATH  Google Scholar 

  6. Wang, D., Zhang, Y., Wang, Y., Lee, Y.S., Lu, P., Wang, Y.: Cutting on Triangle Mesh Local Model-Based Haptic Display for Dental Preparation Surgery Simulation. IEEE Trans. Visual. Comput. Graph. 11(6), 671–683 (2005)

    Article  Google Scholar 

  7. Kim, L., Park, S.H.: Haptic Interaction and Volume Modeling Techniques for Realistic Dental Simulation. Visual Computing 22, 90–98 (2006)

    Article  Google Scholar 

  8. Yau, H.T., Hsu, C.Y.: Development of a Dental Training System Based on Point-Based Models. Computer-Aided Design & Applications 3(6), 779–787 (2006)

    Google Scholar 

  9. Johnson, W., Mellor, P.B.: Engineering Plasticity, V.N. Reinhold, London (1973)

    Google Scholar 

  10. Jacobs, C.H., Pope, M.H., Berry, J.T., Hoaglund, F.: A Study of the Bone Machining Process–Orthogonal Cutting. J. of Biomech. 7(2), 131–136 (1974)

    Article  Google Scholar 

  11. Plaskos, C., Hodgson, A.J., Cinquin, P.: Modeling and Optimization of Bone-Cutting Forces in Orthopaedic Surgery. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 254–261. Springer, Heidelberg (2003)

    Google Scholar 

  12. Wiggins, K.L., Malkin, S.: Drilling of Bone. J. of Biomech. 9(9), 553–559 (1976)

    Article  Google Scholar 

  13. Krause, W.R.: Orthogonal Bone Cutting: Saw Design and Operating Characteristics. J. of Biomech. Eng. 109(3), 263–271 (1987)

    Article  MathSciNet  Google Scholar 

  14. Jackson, M.J., Robinson, G.M., Sein, H., Ahmed, W., Woodwards, R.: Machining Cancellous Bone Prior to Prosthetic Implantation. J. of Materials Eng. and Performance 14(3), 293–300 (2005)

    Article  Google Scholar 

  15. Ehmann, K.F., Kapoor, S.G., DeVor, R.E., Lazoglu, I.: Machining Process Modeling: a Review. ASME J. Manuf. Sci. Eng. 119(4-B), 655–663 (1997)

    Article  Google Scholar 

  16. Lim, E.M., Feng, H.Y., Menq, C.H., Lin, Z.H.: The Prediction of Dimensional Error for Sculptured Surface Productions Using the Ball-End Milling Process, Part 1: Chip Geometry Analysis and Cutting Force Prediction. Int. J. of Mach. Tools and Manuf. 35(8), 1149–1169 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel Ferre

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moghaddam, M., Nahvi, A., Arbabtafti, M., Mahvash, M. (2008). A Physically Realistic Voxel-Based Method for Haptic Simulation of Bone Machining. In: Ferre, M. (eds) Haptics: Perception, Devices and Scenarios. EuroHaptics 2008. Lecture Notes in Computer Science, vol 5024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69057-3_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69057-3_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69056-6

  • Online ISBN: 978-3-540-69057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics