Abstract
We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of \(\frac{24}{29}=0.827586\ldots\). This improves on the previous best ratio of \(\frac{468}{575}=0.813913\ldots\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, Z.-Z., Tanahashi, R., Wang, L.: An Improved Approximation Algorithm for Maximum Edge 2-Coloring in Simple Graphs. Journal of Discrete Algorithms (to appear)
Feige, U., Ofek, E., Wieder, U.: Approximating Maximum Edge Coloring in Multigraphs. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 108–121. Springer, Heidelberg (2002)
Hartvigsen, D.: Extensions of Matching Theory. Ph.D. Thesis, Carnegie-Mellon University (1984)
Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1997)
Jacobs, D.P., Jamison, R.E.: Complexity of Recognizing Equal Unions in Families of Sets. Journal of Algorithms 37, 495–504 (2000)
Kawarabayashi, K., Matsuda, H., Oda, Y., Ota, K.: Path Factors in Cubic Graphs. Journal of Graph Theory 39, 188–193 (2002)
Kosowski, A., Malafiejski, M., Zylinski, P.: Packing Edge Covers in Graphs of Small Degree (manuscript, 2006)
O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford (1987)
Urrutia, J.: Art Gallery and Illumination Problems. In: Handbook on Computational Geometry, Elsevier Science, Amsterdam (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, ZZ., Tanahashi, R. (2008). Approximating Maximum Edge 2-Coloring in Simple Graphs Via Local Improvement. In: Fleischer, R., Xu, J. (eds) Algorithmic Aspects in Information and Management. AAIM 2008. Lecture Notes in Computer Science, vol 5034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68880-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-68880-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68865-5
Online ISBN: 978-3-540-68880-8
eBook Packages: Computer ScienceComputer Science (R0)