Approximating Maximum Edge 2-Coloring in Simple Graphs Via Local Improvement | SpringerLink
Skip to main content

Approximating Maximum Edge 2-Coloring in Simple Graphs Via Local Improvement

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5034))

Included in the following conference series:

Abstract

We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of \(\frac{24}{29}=0.827586\ldots\). This improves on the previous best ratio of \(\frac{468}{575}=0.813913\ldots\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, Z.-Z., Tanahashi, R., Wang, L.: An Improved Approximation Algorithm for Maximum Edge 2-Coloring in Simple Graphs. Journal of Discrete Algorithms (to appear)

    Google Scholar 

  2. Feige, U., Ofek, E., Wieder, U.: Approximating Maximum Edge Coloring in Multigraphs. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 108–121. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Hartvigsen, D.: Extensions of Matching Theory. Ph.D. Thesis, Carnegie-Mellon University (1984)

    Google Scholar 

  4. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1997)

    Google Scholar 

  5. Jacobs, D.P., Jamison, R.E.: Complexity of Recognizing Equal Unions in Families of Sets. Journal of Algorithms 37, 495–504 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kawarabayashi, K., Matsuda, H., Oda, Y., Ota, K.: Path Factors in Cubic Graphs. Journal of Graph Theory 39, 188–193 (2002)

    Article  MathSciNet  Google Scholar 

  7. Kosowski, A., Malafiejski, M., Zylinski, P.: Packing Edge Covers in Graphs of Small Degree (manuscript, 2006)

    Google Scholar 

  8. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  9. Urrutia, J.: Art Gallery and Illumination Problems. In: Handbook on Computational Geometry, Elsevier Science, Amsterdam (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rudolf Fleischer Jinhui Xu

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, ZZ., Tanahashi, R. (2008). Approximating Maximum Edge 2-Coloring in Simple Graphs Via Local Improvement. In: Fleischer, R., Xu, J. (eds) Algorithmic Aspects in Information and Management. AAIM 2008. Lecture Notes in Computer Science, vol 5034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68880-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68880-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68865-5

  • Online ISBN: 978-3-540-68880-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics