Abstract
We show how finite limits and colimits can be calculated compositionally using the algebras of spans and cospans, and give as an application a proof of the Kleene Theorem on regular languages.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S., Coecke, B.: A Categorical Semantics of Quantum Protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS 2004, pp. 415–425. IEEE Computer Society, Los Alamitos (2004)
Bloom, S.L., Esik, Z.: Iteration Theories: the equational logic of iterative processes. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (1993)
Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connection. Theor. Comput. Sci. 286(2), 247–292 (2002)
Carboni, A., Walters, R.F.C.: Cartesian bicategories I. Journal of Pure and Applied Algebra 49, 11–32 (1987)
de Francesco Albasini, L., Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Cospans and free symmetric monoidal categories (in preparation)
Elgot, C.C.: Monadic computation and iterative algebraic theories, Logoc Colloquium 1973, Studies in Logic 80, pp. 175–230. North Holland, Amsterdam (1975)
Gadducci, F., Heckel, R.: An inductive view of graph transformation. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 223–237. Springer, Heidelberg (1998)
Gadducci, F., Heckel, R., Llabrés, M.: A bi-categorical axiomatisation of concurrent graph rewriting. In: Proc. CTCS 1999, Category Theory and Computer Science. Electronic Notes in Theoretical Computer Science, vol. 29, Elsevier Sciences, Amsterdam (1999)
Joyal, A., Street, R.H.: The geometry of tensor calculus I. Advances in Math. 88, 55–112 (1991)
Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119(3), 447–468 (1996)
Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of processes. Journal of Pure and Applied Algebra 115, 141–178 (1997)
Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): A categorical algebra of transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–321. Springer, Heidelberg (1997)
Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of systems with feedback and boundary. Rendiconti del Circolo Matematico di Palermo Serie II Suppl. 63, 123–156 (2000)
Katis, P., Sabadini, N., Walters, R.F.C.: A formalisation of the IWIM Model. In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 267–283. Springer, Heidelberg (2000)
Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics. Theoret. Informatics Appl. 36, 181–194 (2002)
Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl. Algebra 19, 193–213 (1980)
Kock, J.: Frobenius algebras and 2D topological Quantum Field Theories. Cambridge University Press, Cambridge (2004)
Menni, M., Sabadini, N., Walters, R.F.C.: A universal property of the monoidal 2-category of cospans of ordinals and surjections. Theory and Applications of Categories 18(19), 631–653 (2007)
Meseguer, J., Montanari, U.: Petri Nets Are Monoids. Information and Computation 88, 105–155 (1990)
Penrose, R.: Applications of negative dimensional tensors. In: Combinatorial Mathematics and its Applications, p. 221. Academic Press, London (1971)
Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Minimization and minimal realization in Span(Graph). Mathematical Structures in Computer Science 14, 685–714 (2004)
Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Generic commutative separable algebras and cospans of graphs. Theory and Applications of Categories 15(6), 264–277 (2005)
Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Calculating colimits and limits compositionally. Category Theory 2007, Carvoeiro, Portugal, 18th (June 2007)
Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Calculating colimits and limits compositionally (in preparation)
Walters, R.F.C.: Lecture to the Sydney Category Seminar (January 26, 1983)
Walters, R.F.C.: The tensor product of matrices, Lecture. In: International Conference on Category Theory, Louvain-la-Neuve (1987)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Rosebrugh, R., Sabadini, N., Walters, R.F.C. (2008). Calculating Colimits Compositionally. In: Degano, P., De Nicola, R., Meseguer, J. (eds) Concurrency, Graphs and Models. Lecture Notes in Computer Science, vol 5065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68679-8_36
Download citation
DOI: https://doi.org/10.1007/978-3-540-68679-8_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68676-7
Online ISBN: 978-3-540-68679-8
eBook Packages: Computer ScienceComputer Science (R0)