Evolutionary Viral-type Algorithm for the Inverse Problem for Iterated Function Systems | SpringerLink
Skip to main content

Evolutionary Viral-type Algorithm for the Inverse Problem for Iterated Function Systems

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4967))

Abstract

In this article a possibility of enriching evolutionary algorithms by a specific type mechanism characteristic for replication of influenza viruses is discussed. Genetic material of influenza type A virus consists of eight separate segments. In some types of tasks such a structure of a genome can be more adequate than representation that consists of only one sequence. If influenza viruses strains infect the same cell then their RNA segments can mix freely producing progeny viruses. Furthermore, mistakes leading to new mutations are common. An evolutionary algorithm for solving the inverse problem for iterated function systems (IFSes) for a two-dimensional image is proposed. Four patterns are considered as examples and a preliminary statistical analysis results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnsley, M.F.: Fractals Everywhere. Academic Press, London (1988)

    MATH  Google Scholar 

  2. Bielecki, A., Strug, B.: Finding an Iterated Function Systems based Representation for Complex Visual Structures Using an Evolutionary Algorithm, Machine Graphics & Vision (in print)

    Google Scholar 

  3. Bielecki, A., Strug, B.: A Viral Replication Mechanism in Evolutionary Algorithms. In: International Conference on Artificial Intelligence and Soft Computing, ICAISC 2006 (2006)

    Google Scholar 

  4. Bielecki, A., Strug, B.: An Evolutionary Algorithm for Solving the Inverse Problem for Iterated Function Systems for a Two-Dimensional Image. In: Kurzyński, M., Puchała, E., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems. Advances in Soft Computing, pp. 347–354. Springer, Heidelberg (2005)

    Google Scholar 

  5. Bielecki, A., Strug, B.: Evolutionery Approach to Finding Iterated Function Systems for a Two-Dimensional Image. In: Proc. of ICCVG 2004,Computational Imaging and Vision, vol. 32, pp. 516–521. Springer, Heidelberg (2006)

    Google Scholar 

  6. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  7. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1999)

    Article  MathSciNet  Google Scholar 

  8. Mayer, H.A., Spitzlinger, M.: Multi-Chromosomal Representation and Chromosome Shuffling in Evolutionary Algorithm. In: Congress on Evolutionary Computations, pp. 1145–1149. IEEE, Los Alamitos (2003)

    Chapter  Google Scholar 

  9. Pierrot, H.J., Hinterding, R.: Using Multichromosomes to Solve a Simple Mixed Integer Problem. In: Sattar, A. (ed.) Canadian AI 1997. LNCS, vol. 1342, pp. 137–146. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  10. Taubenberger, J.K., Reid, A.H., Fanning, T.G.: Capturing a Killer Flu Virus. Scientific American 292, 62–71 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roman Wyrzykowski Jack Dongarra Konrad Karczewski Jerzy Wasniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Strug, B., Bielecki, A., Bielecka, M. (2008). Evolutionary Viral-type Algorithm for the Inverse Problem for Iterated Function Systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2007. Lecture Notes in Computer Science, vol 4967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68111-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68111-3_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68105-2

  • Online ISBN: 978-3-540-68111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics