Partial Order Reductions for Bisimulation Checking | SpringerLink
Skip to main content

Partial Order Reductions for Bisimulation Checking

  • Conference paper
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1530))

  • 362 Accesses

Abstract

Partial order methods have been introduced to avoid the state explosion problem in verification resulting from the representation of multiple interleavings of concurrent transitions. The basic idea is to build a reduced state space on which certain properties hold if and only if they hold for the full state space. Most often, the considered properties are linear-time properties. In this paper we suggest novel branching time reduction techniques which allow checking bisimulation equivalence on reduced state spaces. Our reduction takes place on bisimulation game graphs, thus jointly treating the systems under consideration. We show that reduction preserves winning strategies of the two players in the bisimulation game.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Souza, M.L., de Simone, R.: Using partial order methods for the verification of behavioural equivalences. In: von Bochmann, G. (ed.) Formal Description Techniques, FORTE 1995 (1995)

    Google Scholar 

  2. Fernandez, J.-C., Mounier, L.: Verifying bisimulations ”on the fly”. In: Formal Description Techniques (FORTE), pp. 91–105 (1990)

    Google Scholar 

  3. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branching time model checking. In: Israeli Symp. on Theoretical Computer Science (1995)

    Google Scholar 

  4. Huhn, M., Wehrheim, H., Niebert, P.: Partial order reductions for bisimulation checking. Hildesheimer Informatik-Berichte 8/98, Institut für Informatik, Universität Hildesheim (1998)

    Google Scholar 

  5. Klarlund, N.: The limit view of infinite computations. BRICS Report Series RS-94-14, Department of Computer Science, University of Århus, Ny Munkegade, building 540, DK-8000 Århus C, Denmark (May 1994)

    Google Scholar 

  6. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems of equivalence. Information and Computation 86, 46–68 (1990)

    Article  MathSciNet  Google Scholar 

  7. Mazurkiewicz, A.: Introduction to trace theory, ch. 1, pp. 1–42. World Scientific, Singapore (1995)

    Google Scholar 

  8. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  9. Peled, D.: All from one, one for all: On model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)

    Google Scholar 

  10. Workshop on Partial Order Methods in Verification. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 29. American Mathematical Society (1996)

    Google Scholar 

  11. Peled, D., Penczek, W.: Using asynchronous Büchi automata for efficient model-checking of concurrent systems. In: Protocol Specification, Testing and Verification, pp. 90–100 (1995)

    Google Scholar 

  12. Sassone, V., Nielsen, M., Winskel, G.: A classification of models for concurrency. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 82–96. Springer, Heidelberg (1993)

    Google Scholar 

  13. Stirling. C.: Modal temporal logics for processes. Tutorial handout, Computer Science Dept., Århus University, Århus, Denmark, Summerschool in Logical Methods in Concurrency, August 2-13 (1993)

    Google Scholar 

  14. Thomas, W.: Finite-state strategies in regular infinite games. In: Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 148–158. Springer, Heidelberg (1994)

    Google Scholar 

  15. Willems, B., Wolper, P.: Partial-order methods for model checking: From linear time to branching time. In: IEEE Symp. Logic in Comp. Sci (LICS), pp. 294–303. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huhn, M., Niebert, P., Wehrheim, H. (1998). Partial Order Reductions for Bisimulation Checking. In: Arvind, V., Ramanujam, S. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1998. Lecture Notes in Computer Science, vol 1530. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49382-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49382-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65384-4

  • Online ISBN: 978-3-540-49382-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics