Applying Constraint Programming to Protein Structure Determination | SpringerLink
Skip to main content

Applying Constraint Programming to Protein Structure Determination

  • Conference paper
Principles and Practice of Constraint Programming – CP’99 (CP 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1713))

Abstract

In this paper, we propose a constraint-based approach to determining protein structures compatible with distance constraints obtained from Nuclear Magnetic Resonance (NMR) data. We compare the performance of our proposed algorithm with DYANA (“Dynamics algorithm for NMR applications” [1]) an existing commercial application based on simulated annealing. For our test case, computation time for DYANA was more than six hours, whereas the method we propose produced similar results in 8 minutes, so we show that the application of Constraint Programming (CP) technology can greatly reduce computation time. This is a major advantage because this NMR technique generally demands multiple runs of structural computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Güntert, P., Mumenthaler, C., Wüthrich, K.: Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997)

    Article  Google Scholar 

  2. Archer, M., Huber, R., Tavares, P., Moura, I., Moura, J.J., Carrondo, M.A., Sieker, L.C., LeGall, J., Romao, M.J.: Crystal structure of desulforedoxin from Desulfovibrio gigas determined at 1.8 A resolution: a novel non-heme iron protein structure. J. Mol. Biol. 251(5), 690–702 (1995)

    Article  Google Scholar 

  3. Goodfellow, B.J., Rusnak, F., Moura, I., Domke, T., Moura, J.J.G.: NMR determination of the global structure of the 113Cd derivative of Desulforedoxin: Investigation of the Hydrogen bonding pattern at the metal center. Protein Sc. 7, 928–937 (1998)

    Article  Google Scholar 

  4. Press, V., Teukolsky, F.: Numerical Recipes in C, 2nd edn. Cambrige Univ. Press (1994)

    Google Scholar 

  5. Backofen, R.: Constraint Techniques for Solving the Protein Structure Prediction Problem, CP 1998. LNCS, vol. 1520, pp. 72–86. Springer, Heidelberg (1998)

    Google Scholar 

  6. Leishman, S., Gray, P.M.D., Fothergill, J.E.: ASSASSIN: A Constraint Based Assignment System for Protein 2D Nuclear Magnetic Resonance, Applications and Innovations in Expert Systems II. In: Milne, R., Montgomery, A. (eds.) Proceedings of Expert Systems 94, Cambridge, pp. 263–280 (1994)

    Google Scholar 

  7. Beldiceanu, N., Contejean, E.: Introducing Global Constraints in CHIP. Mathl. Comp. Modelling 20(12), 97–123 (1994)

    Article  MATH  Google Scholar 

  8. Zimmerman, D.E., Kulikowski, C.A., Montelione, G.T.: A constraint reasoning system for automating sequence-specific resonance assignments from multidimensional protein NMR spectra. Ismb 1, 447–55 (1993)

    Google Scholar 

  9. Hecht, S., Collins, S.: Three-dimensional structure of the complexes between bovine chymotrypsinogen *A and two recombinant variants of human pancreatic secretory trypsin inhibitor (*Kazal-Type). J. Mol. Biol. 220, 711 (1991)

    Article  Google Scholar 

  10. Marquart, M., Walter, J., Deisenhofer, J., Bode, W., Huber, R.: The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors. Acta Crystallogr., Sect. B 39, 480 (1983)

    Article  Google Scholar 

  11. Bushnell, G.W., Louie, G.V., Brayer, G.D.: High-Resolution Three-Dimensional Structure of Horse Heart Cytochrome C. J.Mol.Biol. 214, 585 (1990)

    Article  Google Scholar 

  12. Revesz, P.: Refining Restriction Enzyme Genome Maps. Constraints 2, 361 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sam-Haroud, D., Faltings, B.: Consistency Techniques for Continuous Constraints. Constraints 1, 85 (1996)

    Article  MathSciNet  Google Scholar 

  14. Cheng, B., Choi, K., Lee, J., Wu, J.: Increasing Constraint Propagation by Redundant Modeling: an Experience Report. Constraints 4, 167 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krippahl, L., Barahona, P. (1999). Applying Constraint Programming to Protein Structure Determination. In: Jaffar, J. (eds) Principles and Practice of Constraint Programming – CP’99. CP 1999. Lecture Notes in Computer Science, vol 1713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48085-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48085-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66626-4

  • Online ISBN: 978-3-540-48085-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics