Enhancing the Resistance of a Provably Secure Key Agreement Protocol to a Denial-of-Service Attack | SpringerLink
Skip to main content

Enhancing the Resistance of a Provably Secure Key Agreement Protocol to a Denial-of-Service Attack

  • Conference paper
Information and Communication Security (ICICS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1726))

Included in the following conference series:

  • 526 Accesses

Abstract

In this manuscript, two key agreement protocols which are resistant to a denial-of-service attack are constructed from a key agreement protocol in [9] provably secure against passive and active attacks. The denial-of-service attack considered is the resource-exhaustion attack on a responder. By the resource-exhaustion attack, a malicious initiator executes a key agreement protocol simultaneously as many times as possible to exhaust the responder’s resources and to disturb executions of it between honest initiators and the responder. The resources are the storage and the CPU. The proposed protocols are the first protocols resistant to both the storage-exhaustion attack and the CPU-exhaustion attack. The techniques used in the construction are stateless connection, weak key confirmation, and enforcement of heavy computation. The stateless connection is effective to enhancing the resistance to the storage-exhaustion attack. The weak key confirmation and the enforcement of heavy computation are effective to enhancing the resistance to the CPU-exhaustion attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aura, T., Nikander, P.: Stateless connections. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 87–97. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73 (1993)

    Google Scholar 

  3. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

    Google Scholar 

  4. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Infor. Theory IT-22, 644–654 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  5. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Designs, Codes and Cryptography 2(2), 107–125 (1992)

    Article  MathSciNet  Google Scholar 

  6. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)

    Google Scholar 

  7. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory IT-31(4), 469–472 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Harkins, D., Carrel, D.: The internet key exchange (IKE). RFC2409 (1998)

    Google Scholar 

  9. Hirose, S., Yoshida, S.: An authenticated Diffie-Hellman key agreement protocol secure against active attacks. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 135–148. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 36–49. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  11. Karn, P., Simpson, W.: Photuris: Session-key management protocol. RFC2522 (1999)

    Google Scholar 

  12. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for authenticated key agreement. Technical Report CORR98-05, Department of C&O, University of Waterloo (1998)

    Google Scholar 

  13. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirose, S., Matsuura, K. (1999). Enhancing the Resistance of a Provably Secure Key Agreement Protocol to a Denial-of-Service Attack. In: Varadharajan, V., Mu, Y. (eds) Information and Communication Security. ICICS 1999. Lecture Notes in Computer Science, vol 1726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47942-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47942-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66682-0

  • Online ISBN: 978-3-540-47942-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics