Abstract
If a simple and fast solution for one-class classification is required, the most common approach is to assume a Gaussian distribution for the patterns of the single class. Bayesian classification then leads to a simple template matching. In this paper we show for two very different applications that the classification performance can be improved significantly if a more uniform subgaussian instead of a Gaussian class distribution is assumed. One application is face detection, the other is the detection of transcription factor binding sites on a genome. As for the Gaussian, the distance from a template, i.e., the distribution center, determines a pattern’s class assignment. However, depending on the distribution assumed, maximum likelihood learning leads to different templates from the training data. These new templates lead to significant improvements of the classification performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benos, P.V., Bulyk, M.L., Stormo, G.D.: Additivity in protein-DNA interactions. Nucleic Acids Research 30, 4442–4451 (2002)
Frech, K., Quandt, K., Werner, T.: Finding protein-binding sites in DNA sequences: The next generation. TIBS 22, 103–104 (1997)
Heisele, B., Poggio, T., Pontil, M.: Face detection in still gray images. Technical Report AI Memo 1687, Massachusetts Institute of Technology (2000)
Kim, J.T., Martinetz, T., Polani, D.: Bioinformatic principles underlying the information content of transcription factor binding sites. Journal of Theoretical Biology 220, 529–544 (2003)
Martinetz, T., Gewehr, J.E., Kim, J.T.: Statistical learning for detecting protein-DNA-binding sites. In: Int. Joint Conf. on Neural Networks 2003, IEEE Press, Los Alamitos (2003)
Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an application to face detection. In: Proceedings of CVPR 1997 (1997)
Schneider, T.D., Stormo, G.D., Gold, L.: Information content of binding sites on nucleotide sequences. J.Mol.Biol. 188, 415–431 (1986)
Schneiderman, H., Kanade, T.: Probabilistic modeling of local appearance and spatial relationships for object recognition. In: Proceedings of CVPR 1998 (1998)
Stormo, G.D.: DNA binding sites: Representation and discovery. Bioinformatics 16, 16–23 (2000)
Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE PAMI 20, 39–51 (1998)
Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Pruß, M., Reuter, I., Schacherer, F.: TRANSFAC: An integrated system for gene expression regulation. Nucl. Acids Res. 28, 316–319 (2000)
Yang, M.-H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. IEEE PAMI 24, 34–58 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Madany Mamlouk, A., Kim, J.T., Barth, E., Brauckmann, M., Martinetz, T. (2003). One-Class Classification with Subgaussians. In: Michaelis, B., Krell, G. (eds) Pattern Recognition. DAGM 2003. Lecture Notes in Computer Science, vol 2781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45243-0_45
Download citation
DOI: https://doi.org/10.1007/978-3-540-45243-0_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40861-1
Online ISBN: 978-3-540-45243-0
eBook Packages: Springer Book Archive