A Probabilistic Definition of Intrinsic Dimensionality for Images | SpringerLink
Skip to main content

A Probabilistic Definition of Intrinsic Dimensionality for Images

  • Conference paper
Pattern Recognition (DAGM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2781))

Included in the following conference series:

  • 2951 Accesses

Abstract

In this paper we address the problem of appropriately representing the intrinsic dimensionality of image neighborhoods. This dimensionality describes the degrees of freedom of a local image patch and it gives rise to some of the most often applied corner and edge detectors. It is common to categorize the intrinsic dimensionality (iD) to three distinct cases: i0D, i1D, and i2D. Real images however contain combinations of all three dimensionalities which has to be taken into account by a continuous representation. Based on considerations of the structure tensor, we derive a cone-shaped iD-space which leads to a probabilistic point of view to the estimation of intrinsic dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1995)

    Google Scholar 

  2. Trunk, G.V.: Representation and analysis of signals: statistical estimation of intrinsic dimensionality and parameter identification. General System 13, 49–76 (1968)

    Google Scholar 

  3. Zetzsche, C., Barth, E.: Fundamental limits of linear filters in the visual processing of two dimensional signals. Vision Research 30 (1990)

    Google Scholar 

  4. Krieger, G., Zetzsche, C.: Nonlinear image operators for the evaluation of local intrinsic dimensionality. IEEE Transactions on Image Processing 5, 1026–1041 (1996)

    Article  Google Scholar 

  5. Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  6. Jähne, B.: Digitale Bildverarbeitung. Springer, Berlin (1997)

    Google Scholar 

  7. Bülow, T.: Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images. PhD thesis, Christian-Albrechts-University of Kiel (1999)

    Google Scholar 

  8. Felsberg, M., Sommer, G.: Image features based on a new approach to 2D rotation invariant quadrature filters. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 369–383. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission Workshop, Interlaken, pp. 149–155 (1987)

    Google Scholar 

  10. Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proceedings of the IEEE First International Conference on Computer Vision, London, Great Britain, pp. 433–438 (1987)

    Google Scholar 

  11. Förstner, W.: Statistische Verfahren für die automatische Bildanalyse und ihre Bewertung bei der Objekterkennung und -vermessung. C. Verlag der Bayerischen Akademie der Wissenschaften, vol. 370 (1991)

    Google Scholar 

  12. Ramanathan, J.: Methods of Applied Fourier Analysis. Birkhäuser, Basel (1998)

    MATH  Google Scholar 

  13. Farnebäck, G.: Fast and accurate motion estimation using orientation tensors and parametric motion models. In: Proceedings of 15th International Conference on Pattern Recognition (IAPR), vol. 1, pp. 135–139 (2000)

    Google Scholar 

  14. Bracewell, R.N.: The Fourier transform and its applications. McGraw Hill, New York (1986)

    Google Scholar 

  15. Harris, C.G., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  16. Krüger, N.: Learning object representations using a priori constraints within ORASSYLL. Neural Computation 13, 389–410 (2001)

    Article  Google Scholar 

  17. Coexeter, H.S.M.: Introduction to Geometry, 2nd edn. Wiley & Sons, Chichester (1969)

    Google Scholar 

  18. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)

    Article  Google Scholar 

  19. Krüger, N., Felsberg, M.: A continuous formulation of intrinsic dimension. In: British Machine Vision Conference (2003) (submitted)

    Google Scholar 

  20. Felsberg, M.: Low-Level Image Processing with the Structure Multivector. PhD thesis, Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel, TR no. 0203 (2002), available at http://www.informatik.uni-kiel.de/reports/2002/0203.html

  21. Krüger, N., Lappe, M., Wörgötter, F.: Biologically motivated multi-modal processing of visual primitives. In: AISB 2003 Convention: Cognition in Machines and Animals, Wales (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felsberg, M., Krüger, N. (2003). A Probabilistic Definition of Intrinsic Dimensionality for Images. In: Michaelis, B., Krell, G. (eds) Pattern Recognition. DAGM 2003. Lecture Notes in Computer Science, vol 2781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45243-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45243-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40861-1

  • Online ISBN: 978-3-540-45243-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics