Fast Feature Ranking Algorithm | SpringerLink
Skip to main content

Abstract

The attribute selection techniques for supervised learning, used in the preprocessing phase to emphasize the most relevant attributes, allow making models of classification simpler and easy to understand. The algorithm has some interesting characteristics: lower computational cost (O(m n log n) m attributes and n examples in the data set) with respect to other typical algorithms due to the absence of distance and statistical calculations; its applicability to any labelled data set, that is to say, it can contain continuous and discrete variables, with no need for transformation. In order to test the relevance of the new feature selection algorithm, we compare the results induced by several classifiers before and after applying the feature selection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilar-Ruiz, J.S., Riquelme, J.C., Toro, M.: Data Set Editing by Ordered Projection. Intelligent Data Analysis Journal 5(5), 1–13 (2001)

    Google Scholar 

  2. Almuallim, H., Dietterich, T.G.: Learning boolean concepts in the presence of many irrelevant features. Artificial Intelligence 69(1-2), 279–305 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blake, C., Merz, E.K.U.: Repository of machine learning databases (1998)

    Google Scholar 

  4. Hall, M.A.: Correlation-based feature selection for machine learning. PhD thesis, Department of Computer Science, University of Waikato, Hamilton, New Zealand (1998)

    Google Scholar 

  5. Hoare, C.A.R.: QuickSort. Computer Journal 5(1), 10–15 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kira, K., Rendell, L.: A practical approach to feature selection. In: Proceedings of the Ninth International Conference on Machine Learning, pp. 249–256. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  7. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  8. Kononenko, I.: Estimating attibutes: Analisys and extensions of relief. In: Proceedings of the Seventh European Conference on Machine Learning, pp. 171–182. Springer, Heidelberg (1994)

    Google Scholar 

  9. Quinlan, J.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  10. Robnik-Ŝikonja, M., Kononenko, I.: An adaption of relief for attribute estimation in regression. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  11. Setiono, R., Liu, H.: A probabilistic approach to feature selection-a filter solution. In: Proceedings of International Conference on Machine Learning, pp. 319–327 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruiz, R., Riquelme, J.C., Aguilar-Ruiz, J.S. (2003). Fast Feature Ranking Algorithm. In: Palade, V., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science(), vol 2773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45224-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45224-9_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40803-1

  • Online ISBN: 978-3-540-45224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics