Abstract
The predictor coefficients of a mobile radio channel predictor have to be adapted to the changes in the radio environment. A direct adaptive predictor for the taps of a mobile radio channel is proposed. The coefficients of the predictor are assumed to change according to a filtered random walk model and are tracked using a Kalman filter. The filtered random walk is the simplest linear model that describes smooth changes of the coefficients and that includes integration. The proper choice of tuning parameters is discussed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ekman, T.: Prediction of Mobile Radio Channels, Modeling and Design, PhD thesis, Uppsala University, Uppsala, Sweden (2002)
Duel-Hallen, A., Hu, S., Hallen, H.: Long-range prediction of fading signals. IEEE Signal Processing Magazine 17, 62–75 (2000)
Ekman, T., Sternad, M., Ahlén, A.: Unbiased Power Prediction on Broadband Channels. In: IEEE Vehicular Technology Conference VTC2002-Fall, Vancouver, Canada (September 2002)
Chung, S.T., Goldsmith, A.: Degrees of Freedom in Adaptive Modulation: A Unified View. IEEE Transaction on Communications 49(9), 1561–1571 (2001)
Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice Hall, Englewod Cliffs (1979)
Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, New York (1970)
Sternad, M., Ekman, T., Ahlén, A.: Power prediction on Broadband Channels. In: IEEE Vehicular Technology Conference VTC2001-Spring, Rhodes, Greece (May 2001)
Papoulis, A.: A note on the predictability of band-limited processes. Preceedings of the IEEE 73(8), 1332–1333 (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ekman, T. (2003). Adaptive Prediction of Mobile Radio Channels Utilizing a Filtered Random Walk Model for the Coefficients. In: Palade, V., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2003. Lecture Notes in Computer Science(), vol 2773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45224-9_179
Download citation
DOI: https://doi.org/10.1007/978-3-540-45224-9_179
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40803-1
Online ISBN: 978-3-540-45224-9
eBook Packages: Springer Book Archive