A Constructive Proof of the Soundness of the Encoding of Random Access Machines in a Linda Calculus with Ordered Semantics | SpringerLink
Skip to main content

A Constructive Proof of the Soundness of the Encoding of Random Access Machines in a Linda Calculus with Ordered Semantics

  • Conference paper
Theoretical Computer Science (ICTCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2841))

Included in the following conference series:

  • 192 Accesses

Abstract

Random Access Machines (RAMs) are a deterministic Turing-complete formalism especially well suited for being encoded in other formalisms. This is due to the fact that RAMs can be defined starting from very primitive concepts and operations, which are unbounded natural numbers, tuples, successor, predecessor and test for equality to zero. Since these concepts are easily available also in theorem-provers and proof-assistants, RAMs are good candidates for proving Turing-completeness of formalisms using a proof-assistant. In this paper we describe an encoding in Coq of RAMs into a Linda Calculus endowed with the Ordered Semantics. We discuss the main difficulties that must be faced and the techniques we adopted to solve them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Busi, N., Gorrieri, R., Zavattaro, G.: On the Expressiveness of Linda Coordination Primitives. Information and Computation 156(1/2), 90–121 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. The Coq proof-assistant, http://coq.inria.fr/

  3. Hofmann, M.: Extensional concepts in intensional type theory. Ph.D. thesis, University of Edinburgh (July 1995)

    Google Scholar 

  4. McBride, C.: Dependently Typed Functional Programs and their Proofs. Ph.D. thesis, University of Edinburgh (2000)

    Google Scholar 

  5. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Programming Languages and Systems 7(1), 80–112 (1985)

    Article  MATH  Google Scholar 

  6. Gelernter, D., Carriero, N.: Coordination Languages and their Significance. Communications of the ACM 35(2), 97–102 (1992)

    Article  Google Scholar 

  7. Barthe, G., Courtieu, P.: Efficient Reasoning about executable specifications in Coq. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 31–46. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Asperti, A., Guidi, F., Padovani, L., Sacerdoti Coen, C., Schena, I.: Mathematical Knowledge Management in HELM. In: On-Line Proceedings of the First International Workshop on Mathematical Knowledge Management (MKM 2001), RISCLinz, Austria (September 2001)

    Google Scholar 

  9. Asperti, A., Guidi, F., Padovani, L., Sacerdoti Coen, C., Schena, I.: XML, Stylesheets and the re-mathematization of Formal Content. In: On-Line Proceedings of EXTREME 2001 (2001)

    Google Scholar 

  10. Milner, R.: The Polyadic π-Calculus: A Tutorial Technical Report, Department of Computer Science, University of Edinburgh, ECS-LFCS-91-180 (October 1991)

    Google Scholar 

  11. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  12. Shepherdson, J.C., Sturgis, J.E.: Computability of recursive functions. Journal of the ACM 10, 217–255 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  13. Busi, N., Gorrieri, R., Zavattaro, G.: A Process Algebraic View of Linda Coordination Primitives. Theoretical Computer Science 192(2), 167–199 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Busi, N., Zavattaro, G.: On the Expressiveness of Movement in Pure Mobile Ambients. In: Gregori, E., Cherkasova, L., Cugola, G., Panzieri, F., Picco, G.P. (eds.) NETWORKING 2002. LNCS, vol. 2376, Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coen, C.S. (2003). A Constructive Proof of the Soundness of the Encoding of Random Access Machines in a Linda Calculus with Ordered Semantics. In: Blundo, C., Laneve, C. (eds) Theoretical Computer Science. ICTCS 2003. Lecture Notes in Computer Science, vol 2841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45208-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45208-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20216-5

  • Online ISBN: 978-3-540-45208-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics