Tableau Calculi for Preference-Based Conditional Logics | SpringerLink
Skip to main content

Tableau Calculi for Preference-Based Conditional Logics

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2796))

Abstract

In this paper we develop labelled and uniform tableau methods for some fundamental system of propositional conditional logics. We consider the well-known system CE (that can be seen as a generalization of preferential nonmonotonic logic), and some related systems. Our tableau proof procedures are based on a possible-worlds structures endowed with a family of preference relations. The tableau procedure gives the first practical decision procedure for CE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Broda, K., Gabbay, D., Lamb, L., Russo, A.: Labelled Natural Deduction for Conditional Logic of Normality. Logic Journal of the IGPL 10(2), 123–163 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Artosi, A., Governatori, G., Rotolo, A.: Labelled tableaux for non-monotonic reasoning: Cumulative consequence relations. Journal of Logic and Computation 12 (2002)

    Google Scholar 

  3. Boutilier, C.: Conditional logics of normality: a modal approach. Artificial Intelligence 68, 87–154 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crocco, G., Fariñas del Cerro, L.: Structure, Consequence relation and Logic, vol. 4, pp. 239–259. Oxford University Press, Oxford (1992)

    Google Scholar 

  5. Crocco, G., Fariñas del Cerro, L., Herzig, A.: Conditionals: From philosophy to computer science. Studies in Logic and Computation, Oxford University Press, Oxford (1995)

    Google Scholar 

  6. Crocco, G., Lamarre, P.: On the Connection between Non-Monotonic Inference Systems and Conditional Logics. In: Nebel, B., Sandewall, E. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd International Conference, pp. 565–571 (1992)

    Google Scholar 

  7. Delgrande, J.P.: A first-order conditional logic for prototypical properties. Artificial Intelligence (33), 105–130 (1987)

    Google Scholar 

  8. de Swart, H.C.M.: A Gentzen-or Beth-type system, a practical decision procedure and a constructive completeness proof for the counterfactual logics VC and VCS. Journal of Symbolic Logic 48, 1–20 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fitting, M.: Proof methods for Modal and Intuitionistic Logic. Synthese library, vol. 169. D. Reidel, Dordrecht (1983)

    Google Scholar 

  10. Friedman, N., Halpern, J.: On the complexity of conditional logics. In: Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference, KR 1994, pp. 202–213 (1994)

    Google Scholar 

  11. Gabbay, D.M.: Labelled Deductive Systems. Oxford Logic Guides, vol. I, Oxford University Press, Oxford (1996)

    Google Scholar 

  12. Gent, I.P.: A sequent or tableaux-style system for Lewis’s counterfactual logic VC. Notre Dame j. of Formal Logic 33(3), 369–382 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ginsberg, M.L.: Counterfactuals. Artificial Intelligence 30(2), 35–79 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Giordano, L., Gliozzi, V., Olivetti, N.: Iterated Belief Revision and Conditional Logic. Studia Logica, special issue on Belief Revision 70(1), 23–47 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Goré, R.: Tableau Methods for Modal and Temporal Logics Rajeev Goré. In: D’Agostino, M., Gabbay, D., Haehnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  16. Grahne, G.: Updates and Counterfactuals. Journal of Logic and Computation 8(1), 87–117 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Groeneboer, C., Delgrande, J.: A general approach for determining the validity of commonsense assertions using conditional logics. International Journal of Intelligent Systems (5), 505–520 (1997)

    Google Scholar 

  18. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–202 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lamarre, P.: Etude des raisonnements non-monotones: apports des logiques des conditionnels et des logiques modales. PhD thesis, université Paul Sabatier, Toulouse (1992)

    Google Scholar 

  20. Lamarre, P.: A tableaux prover for conditional logics. In: Principles of Knowledge Representation and Reasoning: Proceedings of the 4th International Conference, KR 1994, pp. 572–580 (1994)

    Google Scholar 

  21. Lewis, D.: Counterfactuals. Basil Blackwell Ltd, Malden (1973)

    Google Scholar 

  22. Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)

    MATH  Google Scholar 

  23. Olivetti, N., Schwind, C.: A sequent calculus and a complexity bound for minimal conditional logic. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 384–404. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  24. Schwind, C.B.: Causality in Action Theories. Electronic Articles in Computer and Information Science, section A 3, 27–50 (1999)

    MathSciNet  Google Scholar 

  25. Viganó, L.: Labelled Non-classical Logics. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C. (2003). Tableau Calculi for Preference-Based Conditional Logics. In: Cialdea Mayer, M., Pirri, F. (eds) Automated Reasoning with Analytic Tableaux and Related Methods . TABLEAUX 2003. Lecture Notes in Computer Science(), vol 2796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45206-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45206-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40787-4

  • Online ISBN: 978-3-540-45206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics