Testing Low-Degree Polynomials over GF(2) | SpringerLink
Skip to main content

Abstract

We describe an efficient randomized algorithm to test if a given binary function f: {0,1}n →{0,1} is a low-degree polynomial (that is, a sum of low-degree monomials). For a given integer k ≥ 1 and a given real ε >0, the algorithm queries f at \(O(\frac{1}{\epsilon}+k4^k)\) points. If f is a polynomial of degree at most k, the algorithm always accepts, and if the value of f has to be modified on at least an ε fraction of all inputs in order to transform it to such a polynomial, then the algorithm rejects with probability at least 2/3. Our result is essentially tight: Any algorithm for testing degree-k polynomials over GF(2) must perform \(\Omega(\frac{1}{\epsilon}+2^k)\) queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable with a constant number of queries. In: Proceedings of the Fortieth Annual Symposium on Foundations of Computer Science, pp. 645–655 (1999)

    Google Scholar 

  2. Arora, S., Safra, S.: Improved low-degree testing and its applications. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, pp. 485–495 (1997)

    Google Scholar 

  3. Babai, L., Fortnow, L., Levin, L., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, pp. 21–31 (1991)

    Google Scholar 

  4. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1(1), 3–40 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M., Sudan, M.: Linearity testing in characteristic two. In: Proceedings of the Thirty-Sixth Annual Symposium on Foundations of Computer Science, pp. 432–441 (1995)

    Google Scholar 

  6. Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically checkable proofs and applications to approximation. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, pp. 294–304 (1993)

    Google Scholar 

  7. Bellare, M., Sudan, M.: Improved non-approximability results. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, pp. 184–193 (1994)

    Google Scholar 

  8. Ben-Sasson, E., Harsha, P., Raskhodnikova, S.: 3CNF properties are hard to test. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on the Theory of Computing (2003) (to appear)

    Google Scholar 

  9. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Derandomizing low degree tests via epsilon-biased spaces. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on the Theory of Computing (2003) (to appear)

    Google Scholar 

  10. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. Journal of Computer and System Sciences 47, 549–595 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique is almost NP-complete. Journal of the Association for Computing Machinery, 268–292 (1996)

    Google Scholar 

  12. Friedl, K., Sudan, M.: Some improvements to total degree tests. In: Proceedings of the 3rd Annual Israel Symposium on Theory of Computing and Systems, pp. 190–198 (1995), Corrected version available online at http://theory.lcs.mit.edu/~madhu/papers/friedl.ps

  13. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-testing/correcting for polynomials and for approximate functions. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, pp. 32–42 (1991)

    Google Scholar 

  14. Hall, M.: Combinatorial Theory. John Wiley & Sons, Chichester (1967)

    MATH  Google Scholar 

  15. Kasami, T., Lin, S., Peterson, W.W.: New generalizations of the reed-muller codes, part i: Primitive codes. IEEE Transactions on Information Theory, 189–199 (1968)

    Google Scholar 

  16. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  17. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sudan, M.: Private communications (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D. (2003). Testing Low-Degree Polynomials over GF(2). In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds) Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques. RANDOM APPROX 2003 2003. Lecture Notes in Computer Science, vol 2764. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45198-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45198-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40770-6

  • Online ISBN: 978-3-540-45198-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics