A Wealth of SAT Distributions with Planted Assignments | SpringerLink
Skip to main content

A Wealth of SAT Distributions with Planted Assignments

  • Conference paper
Principles and Practice of Constraint Programming – CP 2003 (CP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2833))

Abstract

Evaluation of local search heuristics for constraint satisfaction and satisfiability problems is based on the generation of instances that are guaranteed to be satisfiable. One popular method for creating hard satisfiable instances is the use of complete search procedures to filter out unsatisfiable instances. This approach however has two problems; first, the size of instances produced is limited considerably and second, the generated instances are far from being random.

Although one can generate satisfiable instances by reducing certain computational problems to SAT, it is not known how a similar generator can be developed directly for k-SAT. In this work we provide a generator for an optimization version of k-SAT that has certain useful properties. First, we show how to produce weighted instances of MAX k-SAT where one seeks to maximize the weight of satisfied clauses. Second, we provide a nice characterization of the optimal solution; in our model not only we know how the optimal solution looks like but we also prove it is unique. Finally, we show that our generator has tunable complexity; by appropriately choosing parameters one can control the hardness of the generated instances leading to an easy-hard-easy pattern in the search complexity for good assignments and a new type of phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating satisfiable problem instances. In: Proc. AAAI 2000 (2000)

    Google Scholar 

  2. Asahiro, Y., Iwama, K., Miyano, E.: Random generation of test instances with controlled attributes. In: Second DIMACS Challenge on Cliques, Coloring and Satisfiability (October 1993)

    Google Scholar 

  3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crawford, J., Kearns, M.: Instances for learning the parity function. In: [7]

    Google Scholar 

  5. Gent, I., Walsh, T.: The SAT Phase Transition. In: Proc. ECAI 1994, pp. 105-109 (1999)

    Google Scholar 

  6. Gent, I., Walsh, T.: The TSP Phase Transition. Artif. Intel. 88, 349–358 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hoos, H.: SATLIB. A collection of SAT tools and data (1999), http://www.informatic.tu-darmstadt.de/AI/SATLIB

  8. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random Boolean expressions. Science 264, 1297–1301 (1994)

    Article  MathSciNet  Google Scholar 

  9. Massacci, F.: Using WalkSAt and RelSat for cryptographic key search. In: Proc. IJCAI 1999, pp. 290–295 (1999)

    Google Scholar 

  10. Mitchell, D., Levesque, H.J.: Some pitfalls for experimenters with random SAT. Artificial Intelligence 81(1-2), 111–125 (1996)

    Article  MathSciNet  Google Scholar 

  11. Mitchell, D., Selman, B., Levesque, H.J.: Generating hard satisfiability problems. Artificial Intelligence 81(1-2) (1996)

    Google Scholar 

  12. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic phase transitions. Nature 400(8) (1999)

    Google Scholar 

  13. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing. In: Second DIMACS Challenge on Cliques, Coloring and Satisfiability (1993)

    Google Scholar 

  14. Slaney, J., Walsh, T.: Backbones in Optimization and Approximation. In: Proc. IJCAI 2001 (2001)

    Google Scholar 

  15. Zhang, W.: Phase transitions and backbones of 3-SAT and MAX 3-SAT. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, p. 153. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Zhang, W., Korf, R.E.: A study of complexity transitions on the asymmetric Travelling Salesman Problem. Artificial Intelligence 81, 223–239 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dimitriou, T. (2003). A Wealth of SAT Distributions with Planted Assignments. In: Rossi, F. (eds) Principles and Practice of Constraint Programming – CP 2003. CP 2003. Lecture Notes in Computer Science, vol 2833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45193-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45193-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20202-8

  • Online ISBN: 978-3-540-45193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics