A Linear-Time Algorithm for 7-Coloring 1-Planar Graphs | SpringerLink
Skip to main content

A Linear-Time Algorithm for 7-Coloring 1-Planar Graphs

  • Conference paper
Mathematical Foundations of Computer Science 2003 (MFCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2747))

Abstract

A graph G is 1-planar if it can be embedded in the plane in such a way that each edge crosses at most one other edge. Borodin showed that 1-planar graphs are 6-colorable, but his proof only leads to a complicated polynomial (but nonlinear) time algorithm. This paper presents a linear-time algorithm for 7-coloring 1-planar graphs (that are already embedded in the plane). The main difficulty in the design of our algorithm comes from the fact that the class of 1-planar graphs is not closed under the operation of edge contraction. This difficulty is overcome by a structure lemma that may find useful in other problems on 1-planar graphs. This paper also shows that it is NP-complete to decide whether a given 1-planar graph is 4-colorable. The complexity of the problem of deciding whether a given 1-planar graph is 5-colorable is still unknown.

The full version can be found at http://rnc.r.dendai.ac.jp/~chen/papers/1planar.pdf

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Appel, K., Haken, W.: Every planar map is four colorable, Part I: Discharging. Illinois J. Math. 21, 429–490 (1977)

    MATH  MathSciNet  Google Scholar 

  2. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable, Part II: Reducibility. Illinois J. Math. 21, 491–567 (1977)

    MATH  MathSciNet  Google Scholar 

  3. Archdeacon, D.: Coupled colorings of planar graphs. Congres. Numer. 39, 89–94 (1983)

    MathSciNet  Google Scholar 

  4. Borodin, O.V.: Solution of Ringel’s problems on vertex-face coloring of planar graphs and coloring of 1-planar graphs (in Russian). Met. Discret. anal., Novosibirsk 41, 12–26 (1984)

    MATH  MathSciNet  Google Scholar 

  5. Borodin, O.V.: A new proof of the 6 color theorem. J. Graph Theory 19, 507–521 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, Z.-Z.: Approximation algorithms for independent sets in map graphs. J. Algorithms 41, 20–40 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Planar map graphs. In: Proc. ACM STOC 1998, pp. 514–523 (1998)

    Google Scholar 

  8. Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49, 127–138 (2002)

    Article  MathSciNet  Google Scholar 

  9. Chiba, N., Nishizeki, T., Saito, N.: A linear 5-coloring algorithm of planar graphs. J. Algorithms. 8, 470–479 (1981)

    MathSciNet  Google Scholar 

  10. Chrobak, M., Diks, K.: Two algorithms for coloring planar graphs with 5 colors. Tech. Report, Columbia University (January 1987)

    Google Scholar 

  11. Frederickson, G.N.: On linear-time algorithms for five-coloring planar graphs. Inform. Process. Lett. 19, 219–224 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Matula, D.W., Shiloach, Y., Tarjan, R.E.: Two linear-time algorithms for fivecoloring a planar graph. Tech. Report STAN-CS-80-830, Stanford University (November 1980)

    Google Scholar 

  13. Ore, O., Plummer, M.D.: Cyclic coloration of planar graphs. In: Recent Progress in Combinatorics (Proc. 3rd Waterloo Conf. on Combinatorics, 1968), pp. 287–293. Academic Press, New York (1969)

    Google Scholar 

  14. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamburg 29, 107–117 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  15. Williams, M.H.: A linear algorithm for colouring planar graphs with five colours. Comput. J. 28, 78–81 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, ZZ., Kouno, M. (2003). A Linear-Time Algorithm for 7-Coloring 1-Planar Graphs. In: Rovan, B., Vojtáš, P. (eds) Mathematical Foundations of Computer Science 2003. MFCS 2003. Lecture Notes in Computer Science, vol 2747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45138-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45138-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40671-6

  • Online ISBN: 978-3-540-45138-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics