Filtering of Text Blocks in Web Images | SpringerLink
Skip to main content

Filtering of Text Blocks in Web Images

  • Conference paper
Intelligent Data Engineering and Automated Learning (IDEAL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2690))

  • 1328 Accesses

Abstract

In this paper extracting text blocks in various Web images is presented here. The basic idea in our approach is to use knowledge of various characteristics of fonts, such as bitmap fonts and scalable fonts. Regardless of the font system there exists a somewhat fixed width of stroke to height ratio, independent of the characters. The algorithms associated with the technique work without prior knowledge of the text orientation, size or font. For verification of the proposed method, we have conducted a number of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amamoto, N., Torigoe, S., Hirogaki, Y.: Block Segmentation and Text Area Extraction of Vertically/Horizontally Written Document. In: IEEE Proceedings, July 1993, pp. 739–742 (1993)

    Google Scholar 

  2. Antonacopoulos, A.: Page Segmentation Using the Description of the Background. Computer Vision and Image Understanding 70(3), 350–369 (1998)

    Article  Google Scholar 

  3. Chen, F.R., Bloomberg, D.S.: Summarization of Imaged Documents without OCR. Computer Vision and Image Understanding 70(3), 307–320 (1998)

    Article  Google Scholar 

  4. Doermann, D.: Indexing and Retrieval of Document Images. A Survey Computer Vision and Image Understanding 70(3), 287–298 (1998)

    Article  Google Scholar 

  5. Etemad, K., Doermann, D., Chellappa, R.: Multiscale Segmentation of unstructured Document Pages Using Soft Decision Integration. IEEE Transaction on Pattern Analysis and Machine Intelligence 19(1), 92–96 (1997)

    Article  Google Scholar 

  6. O’Gorman, L., Kasturi, R.: Document Image Analysis. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  7. Okun, O., Pietikainen, M.: Text Localization in WWW images. In: Proc. of the 5th Multiconference on Systemics, Cybernetics and Informatics, vol. XIV, July 2001, pp. 301–306 (2001)

    Google Scholar 

  8. Jain, A.K., Yu, B.: Document representation and its Application to Page Decomposition. IEEE Transaction on Pattern Analysis and Machine Intelligence 20(3), 294–308 (1998)

    Article  Google Scholar 

  9. Lu, Z.: Detection of Text Regions from Digital Engineering Drawing. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(4), 431–439 (1998)

    Article  Google Scholar 

  10. Kise, K., Sato, A., Iwata, M.: Segmentation of Page Images Using the Area Voronoi Diagram. Computer Vision and Image Understanding 70(3), 370–382 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chin, S. (2003). Filtering of Text Blocks in Web Images. In: Liu, J., Cheung, Ym., Yin, H. (eds) Intelligent Data Engineering and Automated Learning. IDEAL 2003. Lecture Notes in Computer Science, vol 2690. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45080-1_146

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45080-1_146

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40550-4

  • Online ISBN: 978-3-540-45080-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics