Either/Or: Using Vertex Cover Structure in Designing FPT-Algorithms — the Case of k-Internal Spanning Tree | SpringerLink
Skip to main content

Either/Or: Using Vertex Cover Structure in Designing FPT-Algorithms — the Case of k-Internal Spanning Tree

  • Conference paper
Algorithms and Data Structures (WADS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2748))

Included in the following conference series:

  • 1035 Accesses

Abstract

To determine if a graph has a spanning tree with few leaves is NP-hard. In this paper we study the parametric dual of this problem, k-Internal Spanning Tree (Does G have a spanning tree with at least k internal vertices?). We give an algorithm running in time O(24klogk ·k 7/2 + k 2 ·n 2). We also give a 2-approximation algorithm for the problem.

However, the main contribution of this paper is that we show the following remarkable structural bindings between k-Internal Spanning Tree and k-Vertex Cover:

  • No for k-Vertex Cover implies Yes for k-Internal Spanning Tree.

  • Yes for k-Vertex Cover implies No for (2k+1)-Internal Spanning Tree.

We give a polynomial-time algorithm that produces either a vertex cover of size kor a spanning tree with at least k internal vertices. We show how to use this inherent vertex cover structure to design algorithms for FPT problems, here illustrated mainly by k-Internal Spanning Tree. We also briefly discuss the application of this vertex cover methodology to the parametric dual of the Dominating Set problem. This design technique seems to apply to many other FPT problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.: Private communication

    Google Scholar 

  2. Alber, J., Niedermeier, R.: Improved tree decomposition based algorithms for domination-like problems. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 613–627. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Balasubramanian, R., Fellows, M.R., Raman, V.: An Improved Fixed Parameter Algorithm for Vertex Cover. Information Processing Letters 65(3), 163–168 (1998)

    Article  MathSciNet  Google Scholar 

  4. Chor, B., Fellows, M., Juedes, D.: Private communication concerning (manuscript) (in preparation)

    Google Scholar 

  5. Cai, L., Chen, J., Downey, R., Fellows, M.: The parameterized complexity of short computation and factorization. Archive for Mathematical Logic 36, 321–338 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, J., Kanj, I., Jia, W.: Vertex cover: Further Observations and Further Improvements. Journal of Algorithms 41, 280–301 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cormen, T.H., Leierson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge

    Google Scholar 

  8. Downey, R., Fellows, M.: Parameterized Computational Feasibility. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 219–244. Birkhauser, Boston (1995)

    Google Scholar 

  9. Downey, R., Fellows, M.: Fixed-parameter tractability and completeness II: completeness for W[1]. Theoretical Computer Science A 141, 109–131 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  11. Downey, R., Fellows, M., Stege, U.: Parameterized complexity: a framework for systematically confronting computational intractability. In: Graham, R., Kratochvil, J., Nesetril, J., Roberts, F. (eds.) Contemporary Trends in Discrete Mathematics. AMS-DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 49, pp. 49–99 (1999)

    Google Scholar 

  12. Faisal, A., Fellows, M., Langston, M., Rosamond, F.: Private communication concerning (manuscript) (in preparation)

    Google Scholar 

  13. Fellows, M., McCartin, C., Rosamond, F., Stege, U.: Spanning Trees with Few and Many Leaves (to appear)

    Google Scholar 

  14. Galbiati, G., Maffioli, F., Morzenti, A.: A Short Note on the Approximability of the Maximum Leaves Spanning Tree Problem. Information Processing Letters 52, 45–49 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Galbiati, G., Morzenti, A., Maffioli, F.: On the Approximability of some Maximum Spanning Tree Problems. Theoretical Computer Science 181, 107–118 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  17. Khot, S., Raman, V.: Parameterized Complexity of Finding Hereditary Properties. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, p. 137. Springer, Heidelberg (2000); Theoretical Computer Science (COCOON 2000 special issue)

    Chapter  Google Scholar 

  18. Langston, M.: Private communication

    Google Scholar 

  19. Lu, H.-I., Ravi, R.: Approximating Maximum Leaf Spanning Trees in Almost Linear Time. Journal of Algorithms 29, 132–141 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. McCartin, C.: Ph.D. dissertation in Computer Science, Victoria University, Wellington, New Zealand (2003)

    Google Scholar 

  21. Niedermeier, R., Rossmanith, P.: Upper Bounds for Vertex Cover Further Improved. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 561–570. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Telle, J.A., Proskurowski, A.: Practical algorithms on partial k-trees with an application to domination-like problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993. LNCS, vol. 709, pp. 610–621. Springer, Heidelberg (1993)

    Google Scholar 

  23. Robertson, N., Seymor, P.D.: Graph Minors. XX Wagner’s conjecture (to appear)

    Google Scholar 

  24. Stege, U.: Ph.D. dissertation in Computer Science, ETH, Zurich, Switzerland (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prieto, E., Sloper, C. (2003). Either/Or: Using Vertex Cover Structure in Designing FPT-Algorithms — the Case of k-Internal Spanning Tree . In: Dehne, F., Sack, JR., Smid, M. (eds) Algorithms and Data Structures. WADS 2003. Lecture Notes in Computer Science, vol 2748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45078-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45078-8_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40545-0

  • Online ISBN: 978-3-540-45078-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics