Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
H. Abe, S. Tsumoto, M. Ohsaki, and T. Yamaguchi. Evaluating model construction methods with objective rule evaluation indices to support human experts. In V. Torra, Y. Narukawa, A. Valls, and J. Domingo-Ferrer, editors, Modeling Decisions for Artificial Intelligence, volume 3885 of Lecture Notes in Computer Science, pages 93-104, Tarragona, Spain, 2006. Springer-Verlag.
R. Agrawal, T. Imielinski, and A.N. Swami. Mining association rules between sets of items in large databases. In P. Buneman and S. Jajodia, editors, ACM SIGMOD International Conference on Management of Data, pages 207-216, 1993.
J. Azé and Y. Kodratoff. Evaluation de la résistance au bruit de quelques mesures d’extraction de règles d’assocation. In D. Hérin and D.A. Zighed, editors, Extraction des connaissances et apprentissage, volume 1, pages 143-154. Hermes, 2002.
J. Azé and Y. Kodratoff. A study of the effect of noisy data in rule extraction systems. In The Sixteenth European Meeting on Cybernetics and Systems Research, volume 2, pages 781-786, 2002.
J. P. Barthélemy, A. Legrain, P. Lenca, and B. Vaillant. Aggregation of valued relations applied to association rule interestingness measures. In V. Torra, Y. Narukawa, A. Valls, and J. Domingo-Ferrer, editors, Modeling Decisions for Artificial Intelligence, volume 3885 of Lecture Notes in Computer Science, pages 203-214, Tarrogona, Spain, 2006. Springer-Verlag.
R. J. Bayardo and R. Agrawal. Mining the most interesting rules. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 145-154, 1999.
R. Bisdorff. Bipolar ranking from pairwise fuzzy outrankings. Belgian Journal of Operations Research, Statistics and Computer Science, 37(4) :379-387, 1999.
C.L. Blake and C.J. Merz. UCI repository of machine learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.
J. Blanchard, F. Guillet, and H. Briand. A virtual reality environment for knowledge mining. In R. Bisdorff, editor, Human Centered Processes, pages 175-179, Luxembourg, 2003.
J. Blanchard, F. Guillet, H. Briand, and R. Gras. Assessing the interestingness of rules with a probabilistic measure of deviation from equilibrium. In J. Janssen and P. Lenca, editors, The XIth International Symposium on Applied Stochastic Models and Data Analysis, pages 191-200, Brest, France, 2005.
J. Blanchard, F. Guillet, H. Briand, and R. Gras. IPEE : Indice probabiliste d’écart à l’équilibre pour l’évaluation de la qualité des règles. In Atelier Qualité des Données et des Connaissances (EGC 2005), pages 26-34, 2005.
J. Blanchard, F. Guillet, R. Gras, and H. Briand. Using information-theoretic measures to assess association rule interestingness. In The 5th IEEE International Conference on Data Mining, pages 66-73, Houston, Texas, USA, 2005. IEEE Computer Society Press.
C. Borgelt and R. Kruse. Induction of association rules: Apriori implementation. In Compstat’02, pages 395-400, Berlin, Germany, 2002. Physica Verlag.
J.P. Brans and B. Mareschal. promethee-gaia - Une méthode d’aide à la décision en présence de critères multiples. Ellipses, 2002.
J.P. Brans and P. Vincke. A preference ranking organization method. Manage- ment Science, 31(6):647-656, 1985.
T. Brijs, K. Vanhoof, and G. Wets. Defining interestingness for association rules. International journal of information theories and applications, 10(4):370-376,2003.
S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing association rules to correlations. In ACM SIGMOD/PODS’97 Joint Conference, pages 265-276, 1997.
S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In J. Peckham, editor, ACM SIGMOD International Conference on Management of Data, pages 255-264, Tucson, Arizona, USA, 1997. ACM Press.
J.-H. Chauchat and A. Risson. Visualization of Categorical Data, chapter 3, pages 37-45. Blasius J. & Greenacre M. ed., 1998. New York: Academic Press.
K.W. Church and P. Hanks. Word association norms, mutual information an lexicography. Computational Linguistics, 16(1):22-29, 1990.
E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. Ullman, and C. Yang. Finding interesting associations without support pruning. In The 16th International conference on Data engineering, 2000.
J. Cohen. A coefficient of agreement for nominal scale. Educational and Psychological Measurement, 20:37-46, 1960.
A.W.F. Edwards. The measure of association in a 2 x 2 table. Journal of the Royal Statistical Society, Series A, 126(1):109-114, 1963.
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.
D. Feno, J. Diatta, and A. Totohasina. Normalisée d’une mesure probabiliste de la qualité des règles d’association : étude de cas. In Atelier Qualité des Données et des Connaissances (EGC 2006), pages 25-30, 2006.
A. Freitas. On rule interestingness measures. Knowledge-Based Systems journal, pages 309-315, 1999.
V. Giakoumakis and B. Monjardet. Coefficients d’accord entre deux préordres totaux. Statistique et Analyse des Données, 12(1 et 2):46-99, 1987.
I.J. Good. The estimation of probabilities: An essay on modern bayesian methods. The MIT Press, Cambridge, MA, 1965.
R. Gras, S. Ag. Almouloud, M. Bailleuil, A. Larher, M. Polo, H. Ratsimba-Rajohn, and A. Totohasina. L’implication Statistique, Nouvelle Méthode Exploratoire de Données. Application à la Didactique, Travaux et Thèses. La Pensée Sauvage, 1996.
R. Gras, R. Couturier, J. Blanchard, H. Briand, P. Kuntz, and P. Peter. Quelques critères pour une mesure de qualité de règles d’association - un exemple: l’intensité d’implication. Revue des Nouvelles Technologies de l’Information (Mesures de Qualité pour la Fouille de Données), (RNTI-E-1):3-31, 2004.
R. Gras, P. Kuntz, R. Couturier, and F. Guillet. Une version entropique de l’intensité d’implication pour les corpus volumineux. In H. Briand and F. Guillet, editors, Extraction des connaissances et apprentissage, volume 1, pages 69-80. Hermes, 2001.
S. Greco, Z. Pawlak, and R. Slowinski. Can bayesian confirmation measures be useful for rough set decision rules? Engineering Applications of Artificial Intelligence, 17(4):345-361, 2004.
S. Guillaume. Traitement des données volumineuses, Mesures et algorithmes d’extraction de règles d’association et règles ordinales. PhD thesis, Université de Nantes, 2000.
F. Guillet. Mesures de la qualité des connaissances en ECD. Atelier, Extraction et gestion des connaissances, 2004.
P. Hajek, I. Havel, and M. Chytil. The guha method of automatic hypotheses determination. Computing, (1):293-308, 1966.
R.J. Hilderman and H.J. Hamilton. Applying objective interestingness measures in data mining systems. In Fourth European Symposium on Principles of Data Mining and Knowledge Discovery, pages 432-439. Springer Verlag, 2000.
R.J. Hilderman and H.J. Hamilton. Evaluation of interestingness measures for ranking discovered knowledge. Lecture Notes in Computer Science, 2035:247-259,2001.
R.J. Hilderman and H.J. Hamilton. Knowledge Discovery and Measures of Interest. Kluwer Academic Publishers, 2001.
R.J. Hilderman and H.J. Hamilton. Measuring the interestingness of discovered knowledge: A principled approach. Intelligent Data Analysis, 7(4):347-382,2003.
Y. Huang, H. Xiong, S. Shekhar, and J. Pei. Mining confident co-location rules without a support threshold. In The 18th Annual ACM Symposium on Applied Computing. ACM, 2003.
F. Hussain, H. Liu, E. Suzuki, and H. Lu. Exception rule mining with a relative interestingness measure. In T. Terano, H. Liu, and A.L.P. Chen, editors, The Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, volume 1805 of Lecture Notes in Artificial Intelligence, pages 86-97. SpringerVerlag, 2000.
X-H. Huynh, F. Guillet, and H. Briand. ARQAT: An exploratory analysis tool for interestingness measures. In J. Janssen and P. Lenca, editors, The XIth International Symposium on Applied Stochastic Models and Data Analysis, pages 334-344, Brest, France, 2005.
A. Iodice D’Enza, F. Palumbo, and M. Greenacre. Exploratory data analysis leading towards the most interesting binary association rules. In J. Janssen and P. Lenca, editors, The XIth International Symposium on Applied Stochastic Models and Data Analysis, pages 256-265, Brest, France, 2005.
S. Jaroszewicz and D.A. Simovici. A general measure of rule interestingness. In The 5th European Conference on Principles of Data Mining and Knowledge Discovery, pages 253-265, London, UK, 2001. Springer-Verlag.
H.J. Jeffreys. Some tests of significance treated by the theory of probability. In Proceedings of the Cambridge Philosophical Society, number 31, pages 203-222, 1935.
M. Kamber and R. Shingal. Evaluating the interestingness of characteristic rules. In The Second International Conference on Knowledge Discovery and Data Mining, pages 263-266, Portland, Oregon, August 1996.
D. A. Keim. Information visualization and visual data mining. IEEE Transactions On Visualization And Computer Graphics, 7(1):100-107, 2002.
M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Finding interesting rules from large sets of discovered association rules. In N.R. Adam, B.K. Bhargava, and Y. Yesha, editors, Third International Conference on Information and Knowledge Management, pages 401-407. ACM Press, 1994.
S. Lallich. Mesure et validation en extraction des connaissances à partir des données. Habilitation à Diriger des Recherches - Université Lyon 2, 2002.
S. Lallich, E. Prudhomme, and O. Teytaud. Contrôle du risque multiple en sélection de règles d’association significatives. In G. Hébrail, L. Lebart, and J.-M. Petit, editors, Extraction et gestion des connaissances, volume 1-2, pages 305-316. Cépaduès Editions, 2004.
S. Lallich and O. Teytaud. É valuation et validation de l’intérêt des règles d’association. Revue des Nouvelles Technologies de l’Information (Mesures de Qualité pour la Fouille de Données), (RNTI-E-1):193-217, 2004.
S. Lallich, B. Vaillant, and P. Lenca. Parametrised measures for the evaluation of association rule interestingness. In J. Janssen and P. Lenca, editors, The XIth International Symposium on Applied Stochastic Models and Data Analysis, pages 220-229, Brest, France, 2005.
N. Lavrac, P. Flach, and B. Zupan. Rule evaluation measures: A unifying view. In S. Dzeroski and P. Flach, editors, Ninth International Workshop on Inductive Logic Programming, volume 1634 of Lecture Notes in Computer Science, pages 174-185. Springer-Verlag, 1999.
E. Le Saux, P. Lenca, J-P. Barthélemy, and P. Picouet. Updating a rule basis under cognitive constraints: the COMAPS tool. In The Seventeenth European Annual Conference on Human Decision Making and Manual Control, pages 3-9, December 1998.
E. Le Saux, P. Lenca, and P. Picouet. Dynamic adaptation of rules bases under cognitive constraints. European Journal of Operational Research, 136(2):299-309,2002.
R. Lehn, F. Guillet, P. Kuntz, H. Briand, and J. Philippé. Felix: An interactive rule mining interface in a KDD process. In P. Lenca, editor, Human Centered Processes, pages 169-174, Brest, France, 1999.
P. Lenca, P. Meyer, P. Picouet, B. Vaillant, and S. Lallich. Critères d’évaluation des mesures de qualité en ecd. Revue des Nouvelles Technologies de l’Information (Entreposage et Fouille de Données), (1):123-134, 2003.
P. Lenca, P. Meyer, B. Vaillant, and S. Lallich. A multicriteria decision aid for interestingness measure selection. Technical Report LUSSI-TR-2004-01-EN, Département LUSSI, ENST Bretagne, 2004.
P. Lenca, P. Meyer, B. Vaillant, and P. Picouet. Aide multicritère à la décision pour évaluer les indices de qualité des connaissances - modélisation des préférences de l’utilisateur. In M.-S. Hacid, Y. Kodratoff, and D. Boulanger, editors, Extraction et gestion des connaissances, volume 17 of RSTI-RIA, pages 271-282. Lavoisier, 2003.
P. Lenca, P. Meyer, B. Vaillant, P. Picouet, and S. Lallich. Évaluation et analyse multicritère des mesures de qualité des règles d’association. Revue des Nouvelles Technologies de l’Information (Mesures de Qualité pour la Fouille de Données), (RNTI-E-1):219-246, 2004.
P. Lenca, B. Vaillant, and S. Lallich. On the robustness of association rules. In IEEE International Conference on Cybernetics and Intelligent Systems, Bangkok, Thailand, 2006.
I.C. Lerman. Classification et analyse ordinale des données. Dunod, 1970.
I.C. Lerman and J. Azé. Une mesure probabiliste contextuelle discriminante de qualité des règles d’association. In M.-S. Hacid, Y. Kodratoff, and D. Boulanger, editors, Extraction et gestion des connaissances, volume 17 of RSTI-RIA, pages 247-262. Lavoisier, 2003.
I.C. Lerman, R. Gras, and H. Rostam. Elaboration d’un indice d’implication pour les données binaires, i et ii. Mathématiques et Sciences Humaines, (74, 75):5-35, 5-47, 1981.
B. Liu, W. Hsu, and S. Chen. Using general impressions to analyze discovered classification rules. In Third International Conference on Knowledge Discovery and Data Mining, pages 31-36, 1997.
B. Liu, W. Hsu, S. Chen, and Y. Ma. Analyzing the subjective interestingness of association rules. IEEE Intelligent Systems, 15(5):47-55, 2000.
B. Liu, W. Hsu, K. Wang, and S. Chen. Visually aided exploration of interesting association rules. In Third Pacific-Asia Conference on Methodologies for Knowledge Discovery and Data Mining, pages 380-389. Springer Verlag, 1999.
J. Loevinger. A systemic approach to the construction and evaluation of tests of ability. Psychological monographs, 61(4), 1947.
J.-L. Marichal, P. Meyer, and M. Roubens. Sorting multi-attribute alternatives: The tomaso method. Computers & Operations Research, (32):861-877, 2005.
K. McGarry. A survey of interestingness measures for knowledge discovery. Knowledge Engineering Review Journal, 20(1):39-61, 2005.
M. Ohsaki, Y. Sato, S. Kitaguchi, H. Yokoi, and T. Yamaguchi. Comparison between objective interestingness measures and real human interest in medical data mining. In R. Orchard, C. Yang, and M. Ali, editors, The 17th international conference on Innovations in Applied Artificial Intelligence, volume 3029 of Lecture Notes in Artificial Intelligence, pages 1072-1081. Springer-Verlag, 2004.
B. Padmanabhan. The interestingness paradox in pattern discovery. Journal of Applied Statistics, 31(8):1019-1035, 2004.
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. In C. Beeri and P. Buneman, editors, The 7th International Conference on Database Theory, volume 1540 of Lecture Notes in Computer Science, pages 398-416, Jerusalem, Israel, 1999. Springer.
K. Pearson. Mathematical contributions to the theory of evolution. iii. regression, heredity and panmixia. Philosophical Transactions of the Royal Society, A, 1896.
G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules. In G. Piatetsky-Shapiro and W.J. Frawley, editors, Knowledge Discovery in Databases, pages 229-248. AAAI/MIT Press, 1991.
P. Picouet and P. Lenca. Bases de données et internet, chapter Extraction de connaissances à partir des données, pages 395-420. Hermes Science, 2001.
M. Plasse, N. Niang, G. Saporta, and L. Leblond. Une comparaison de certains indices de pertinence des règles d’association. In G. Ritschard and C. Djeraba, editors, Extraction et gestion des connaissances, volume 1-2, pages 561-568. Cépaduès- Éditions, 2006.
F. Poulet. Visualization in data-mining and knowledge discovery. In P. Lenca, editor, Human Centered Processes, pages 183-191, Brest, France, 1999.
F. Poulet. Towards visual data mining. In 6th International Conference on Enterprise Information Systems, pages 349-356, 2004.
J. Rauch and M. Simunek. Mining for 4ft association rules by 4ft-miner. In Proceeding of the International Conference On Applications of Prolog, pages 285-294, Tokyo, Japan, 2001.
M. Sebag and M. Schoenauer. Generation of rules with certainty and confidence factors from incomplete and incoherent learning bases. In J. Boose, B. Gaines, and M. Linster, editors, The European Knowledge Acquisition Workshop, pages 28-1-28-20. Gesellschaft für Mathematik und Datenverarbeitung mbH, 1988.
A. Silberschatz and A. Tuzhilin. On subjective measures of interestingness in knowledge discovery. In Knowledge Discovery and Data Mining, pages 275-281, 1995.
A. Silberschatz and A. Tuzhilin. User-assisted knowledge discovery: How much should the user be involved. In ACM-SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1996.
S.J. Simoff. Towards the development of environments for designing visualisation support for visual data mining. In S.J. Simoff, M. Noirhomme-Fraiture, and M.H. Böhlen, editors, International Workshop on Visual Data Mining in cunjunction with ECML/PKDD’01, pages 93-106, 2001.
E. Suzuki. In pursuit of interesting patterns with undirected discovery of ex- ception rules. In S. Arikawa and A. Shinohara, editors, Progresses in Discovery Science, volume 2281 of Lecture Notes in Computer Science, pages 504-517. Springer-Verlag, 2002.
E. Suzuki. Discovering interesting exception rules with rule pair. In ECML/PKDD Workshop on Advances in Inductive Rule Learning, pages 163-178,2004.
P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for association patterns. In The Eighth ACM SIGKDD International Conference on KDD, pages 32-41, 2002.
P-N. Tan, V. Kumar, and J. Srivastava. Selecting the right objective measure for association analysis. Information Systems, 4(29):293-313, 2004.
A. Totohasina, H. Ralambondrainy, and J. Diatta. Notes sur les mesures proba-bilistes de la qualité des règles d’association: un algorithme efficace d’extraction des règles d’association implicative. In 7ème Colloque Africain sur la Recherche en Informatique, pages 511-518, 2004.
B. Vaillant. Evaluation de connaissances: le problème du choix d’une mesure de qualité en extraction de connaissances à partir des données. Master’s thesis, Ecole Nationale Supérieure des Télécommunications de Bretagne, 2002.
B. Vaillant, P. Lenca, and S. Lallich. Association rule interestingness measures: an experimental study. Technical Report LUSSI-TR-2004-02-EN, Département LUSSI, ENST Bretagne, 2004.
B. Vaillant, P. Lenca, and S. Lallich. A clustering of interestingness measures. In E. Suzuki and S. Arikawa, editors, Discovery Science, volume 3245 of Lecture Notes in Artificial Intelligence, pages 290–297, Padova, Italy, 2004. SpringerVerlag.
B. Vaillant, P. Picouet, and P. Lenca. An extensible platform for rule quality measure benchmarking. In R. Bisdorff, editor, Human Centered Processes, pages 187–191, 2003.
H. Xiong, P. Tan, and V. Kumar. Mining strong affinity association patterns in data sets with skewed support distribution. In Third IEEE International Conference on Data Mining, pages 387–394, Melbourne, Florida, 2003.
T. Zhang. Association rules. In T. Terano, H. Liu, and A.L.P. Chen, editors, 4th Pacific-Asia Conference Knowledge Discovery and Data Mining, Current Issues and New Applications, volume 1805 of Lecture Notes in Computer Science, Kyoto, Japan, 2000. Springer.
A. Zimmermann and L. De Raedt. CorClass: Correlated association rule mining for classification. In E. Suzuki and S. Arikawa, editors, Discovery Science, volume 3245 of Lecture Notes in Artificial Intelligence, pages 60–72, Padova, Italy, 2004. Springer-Verlag..
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lenca, P., Vaillant, B., Meyer, P., Lallich, S. (2007). Association Rule Interestingness Measures: Experimental and Theoretical Studies. In: Guillet, F.J., Hamilton, H.J. (eds) Quality Measures in Data Mining. Studies in Computational Intelligence, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44918-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-44918-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44911-9
Online ISBN: 978-3-540-44918-8
eBook Packages: EngineeringEngineering (R0)