Subsorted Partial Higher-Order Logic as an Extension of CASL | SpringerLink
Skip to main content

Subsorted Partial Higher-Order Logic as an Extension of CASL

  • Conference paper
Recent Trends in Algebraic Development Techniques (WADT 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1827))

Included in the following conference series:

Abstract

CASL is a specification language combining first-order logic, partiality and subsorting. This paper generalizes the CASL logic to also include higher-order functions and predicates. The logic is presented in a modular step-by-step reduction: the logic is defined in terms of a generalized subsorted partial logic which in turn is defined in terms of many-sorted partial first-order logic. A new notion of homomorphism is introduced to meet the need to get a faithful embedding of first-order CASL into higher-order CASL. Finally, it is discussed how a proof calculus for the proposed logic can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, Chichester (1990)

    MATH  Google Scholar 

  2. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Academic press, London (1986)

    MATH  Google Scholar 

  3. Astesiano, E., Cerioli, M.: On the existence of initial models for partial (higherorder) conditional specifications. In: Díaz, J., Orejas, F. (eds.) CAAP 1989 and TAPSOFT 1989. LNCS, vol. 351, pp. 74–88. Springer, Heidelberg (1989)

    Google Scholar 

  4. Astesiano, E., Cerioli, M.: Partial Higher–Order Specifications. Fundamenta Informaticae 16, 101–126 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Barendregt, H.P.: The Lambda Calculus. Studies in Logic and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam (1991) (revised edition)

    Google Scholar 

  6. Barendregt, H.P.: Lambda calculi with types. In: Gabbai Samson Abramski, D.M., Maiboum, T.S.E. (eds.) Handbook of Logic in Computer Science. Oxford University Press, Oxford (1992)

    Google Scholar 

  7. Borzyszkowski, T.: Moving specification structures between logical systems. Presented at the WADT 1998 workshop, Lisbon (1998)

    Google Scholar 

  8. Broy, M., Facchi, C., Grosu, R., Hettler, R., Hussmann, H., Nazareth, D., Regensburger, F., Stølen, K.: The requirement and design specification language Spectrum, an informal introduction, version 1.0. Technical report, Institut für Informatik, Technische Universität München (March 1993)

    Google Scholar 

  9. Burmeister, P.: A model theoretic approach to partial algebras. Akademie Verlag, Berlin (1986)

    MATH  Google Scholar 

  10. Cerioli, M., Meseguer, J.: May I borrow your logic (transporting logical structures along maps). Theoretical Computer Science 173, 311–347 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cerioli, M., Mossakowski, T., Reichel, H.: From total equational to partial first order logic. In: Astesiano, E., Kreowski, H.-J., Krieg-Brückner, B. (eds.) Algebraic Foundations of Systems Specifications, pp. 31–104. Springer, Heidelberg (1999)

    Google Scholar 

  12. Cerioli, M., Haxthausen, A., Krieg-Brückner, B., Mossakowski, T.: Permissive subsorted partial logic in Casl. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 91–107. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  13. Farmer, W.A.: A partial functions version of Church’s simple type theory. Journal of Symbolic Logic 55, 1269–1291 (1991)

    MathSciNet  Google Scholar 

  14. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery 39, 95–146 (1992); Predecessor in: LNCS, vol. 164, pp. 221–256 (1984)

    MathSciNet  MATH  Google Scholar 

  15. Haxthausen, A.E.: Order-sorted algebraic specifications with higher-order functions. Theoretical Computer Science 183, 157–185 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoffmann, K., Ehrig, H., Wolter, U.: Folding and unfolding construction between algebraic high level nets and contextual higher order nets. Presented at WADT 1999 (1999)

    Google Scholar 

  17. Honsell, F., Sannella, D.: Pre-logical relations. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 546–561. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Kerber, M.: Sound and complete translations from sorted higher-order logic into sorted first-order logic. In: Wah, B.W., Georgeff, M., Shi, Z. (eds.) Proceedings of PRICAI 1994, Third Pacific Rim International Conference on Artificial Intelligence, pp. 149–154. International Academic Publishers, Beijing (1994)

    Google Scholar 

  19. Kohlhase, M.: Higher-order automated theorem proving. Unpublished draft, Universität Saarbücken (1999)

    Google Scholar 

  20. Krieg-Brückner, B., Sannella, D.: Structuring Specifications in-the-large and in-the-small: Higher-Order Functions, Dependent Types and Inheritance in SPECTRAL. In: Abramsky, S., Maibaum, T.S.E. (eds.) CAAP 1991 and TAPSOFT 1991. LNCS, vol. 493, pp. 103–120. Springer, Heidelberg (1991)

    Google Scholar 

  21. CoFI Task Group on Language Design. Casl – The CoFI Algebraic Specification Language – Summary, version 1.0 (October 1998), Available at WWW, http://www.brics.dk/Projects/CoFI/Documents/CASLSummary/index.html

  22. Martí-Oliet, N., Meseguer, J.: Inclusions and subtypes I: First-order case. Journal of Logic and Computation 6(3), 409–438 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meinke, K.: Universal algebra in higher types. Theoretical Computer Science 100(2), 385–417 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meseguer, J.: General logics. In: Logic Colloquium 87, pp. 275–329. North Holland, Amsterdam (1989)

    Google Scholar 

  25. Mossakowski, T., Kolyang, Krieg-Brückner, B.: Static semantic analysis and theorem proving for CASL. In: Parisi Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 333–348. Springer, Heidelberg (1998)

    Google Scholar 

  26. Mossakowski, T., Haxthausen, A., Krieg-Brückner, B.: Subsorted partial higher-order logic as an extension of casl. CoFI Note: L-10 (October 1998), Available at http://www.brics.dk/Projects/CoFI/Notes/L-10.html

  27. Mosses, P.D.: CoFI: The Common Framework Initiative for Algebraic Specification and Development. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 115–137. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  28. Poigné, A.: On specifications, theories, and models with higher types. Information and Control 68(1–3), 1–46 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qian, Z.: An algebraic semantics of higher-order types with subtypes. Acta Informatica 30(6), 569–607 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sannella, D.T., Burstall, R.M.: Structured theories in LCF. In: Ausiello, G., Protasi, M. (eds.) CAAP 1983. LNCS, vol. 159, pp. 377–391. Springer, Heidelberg (1983)

    Google Scholar 

  31. Schobbens, P.Y.: Second-order proof systems for algebraic specification languages. In: Ehrig, H., Orejas, F. (eds.) Abstract Data Types 1992 and COMPASS 1992. LNCS, vol. 785, pp. 321–336. Springer, Heidelberg (1994)

    Google Scholar 

  32. CoFI Task Group on Semantics. Casl – The CoFI Algebraic Specification Language (version 1.0) – Semantics. Version 0.95. CoFI Note: S-9 (March 1999), Available at http://www.brics.dk/Projects/CoFI/Notes/S-9.html

  33. Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Owe, O., Dahl, O.-J. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)

    Google Scholar 

  34. Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., van Rijke, M. (eds.) Frontiers of Combining Systems, 2nd International Workshop. Kluwer, Dordrecht (1998) (to appear)

    Google Scholar 

  35. Tarlecki, A., Möller, B., Wirsing, M.: Algebraic specifications of reachable higherorder algebras. In: Sannella, D., Tarlecki, A. (eds.) Abstract Data Types 1987. LNCS, vol. 332, pp. 154–169. Springer, Heidelberg (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mossakowski, T., Haxthausen, A., Krieg-Brückner, B. (2000). Subsorted Partial Higher-Order Logic as an Extension of CASL. In: Bert, D., Choppy, C., Mosses, P.D. (eds) Recent Trends in Algebraic Development Techniques. WADT 1999. Lecture Notes in Computer Science, vol 1827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44616-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44616-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67898-4

  • Online ISBN: 978-3-540-44616-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics