The Foldings of a Square to Convex Polyhedra | SpringerLink
Skip to main content

The Foldings of a Square to Convex Polyhedra

  • Conference paper
Discrete and Computational Geometry (JCDCG 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2866))

Included in the following conference series:

Abstract

The structure of the set of all convex polyhedra foldable from a square is detailed. It is proved that five combinatorially distinct nondegenerate polyhedra, and four different flat polyhedra, are realizable. All the polyhedra are continuously deformable into each other, with the space of polyhedra having the topology of four connected rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.D.: Konvexe Polyeder. Akademie Verlag, Berlin (1958)

    MATH  Google Scholar 

  2. Lubiw, A., O’Rourke, J.: When can a polygon fold to a polytope? Technical Report 048, Dept. Comput. Sci., Smith College (1996) Presented at AMS Conf., October 5 (1996)

    Google Scholar 

  3. Demaine, E.D., Demaine, M.L., Lubiw, A., O’Rourke, J.: Examples, counterexamples, and enumeration results for foldings and unfoldings between polygons and polytopes. Technical Report 069, Smith College, Northampton, MA, LANL ArXive cs.CG/0007019 (2000)

    Google Scholar 

  4. Demaine, E.D., Demaine, M.L., Lubiw, A., O’Rourke, J.: Enumerating foldings and unfoldings between polygons and polytopes. Graphs and Combinatorics 18, 93–104 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. O’Rourke, J.: Folding and unfolding in computational geometry. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 258–266. Springer, Heidelberg (2000), Papers from the Japan Conf. Discrete Comput. Geom., Tokyo (December 1998)

    Chapter  Google Scholar 

  6. Shephard, G.C.: Convex polytopes with convex nets. Math. Proc. Camb. Phil. Soc. 78, 389–403 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aleksandrov, A.D.: Existence of a convex polyhedron and a convex surface with a given metric. In: Reshetnyak, Y.G., Kutateladze, S.S. (eds.) A. D. Aleksandrov: Selected Works: Part I, Gordon and Breach, Australia, pp. 169–173 (1996); Translation of Doklady Akad. Nauk SSSR, Matematika 30(2), 103–106 (1941)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alexander, R., Dyson, H., O’Rourke, J. (2003). The Foldings of a Square to Convex Polyhedra. In: Akiyama, J., Kano, M. (eds) Discrete and Computational Geometry. JCDCG 2002. Lecture Notes in Computer Science, vol 2866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44400-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44400-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20776-4

  • Online ISBN: 978-3-540-44400-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics