A Nonarchimedian Discretization for Timed Languages | SpringerLink
Skip to main content

A Nonarchimedian Discretization for Timed Languages

  • Conference paper
Formal Modeling and Analysis of Timed Systems (FORMATS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2791))

  • 453 Accesses

Abstract

We give a new discretization of behaviors of timed automata. In this discretization, timed languages are represented as sets of words containing action symbols, a clock tick symbol 1, and two delay symbols δ (negative delay) and δ  +  (positive delay). Unlike the region construction, our discretization commutes with intersection. We show that discretizations of timed automata are, in general, context-sensitive languages over Σ ∪ {1,δ  + ,δ , and give a class of automata that equals the class of languages that are discretizations of timed automata, and show that their emptiness problem is decidable.

This work has been partially supported by the Action Spécifique STIC-CNRS no. 93 “Automates Distribués et Temporisés”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of ACM 49, 172–206 (2002)

    Article  MathSciNet  Google Scholar 

  2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Asarin, E., Dima, C.: Balanced timed regular expressions. ENTCS, vol. 68(5) (2003)

    Google Scholar 

  4. Beauquier, D.: Pumping lemmas for timed automata. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 81–94. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Bellmann, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    Google Scholar 

  6. Bouyer, P., Petit, A.: Decomposition and composition of timed automata. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 210–219. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Bouyer, P., Petit, A.: A Kleene/Büchi-like theorem for clock languages. Journal of Automata, Languages and Combinatorics (2002) (to appear)

    Google Scholar 

  8. Bouyer, P., Petit, A., Thrien, D.: An algebraic characterization of data and timed languages. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 248–261. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Dima, C.: An algebraic theory of real-time formal languages. PhD thesis, Université Joseph Fourier Grenoble, France (2001)

    Google Scholar 

  10. Dima, C.: Computing reachability relations in timed automata. In: Proceedings of LICS 2002, pp. 177–186 (2002)

    Google Scholar 

  11. D’Souza, D., Thiagarajan, P.S.: Product interval automata: A subclass of timed automata. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 60–71. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Herrmann, P.: Timed automata and recognizability. Information Processing Letters 65, 313–318 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley/Narosa Publishing House (1992)

    Google Scholar 

  14. Larsen, K.G., Petterson, P., Yi, W.: Uppaal: Status & developments. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 456–459. Springer, Heidelberg (1997)

    Google Scholar 

  15. Yovine, S.: Model-checking timed automata. In: Rozenberg, G. (ed.) EEF School 1996. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dima, C. (2004). A Nonarchimedian Discretization for Timed Languages. In: Larsen, K.G., Niebert, P. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2003. Lecture Notes in Computer Science, vol 2791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40903-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40903-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21671-1

  • Online ISBN: 978-3-540-40903-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics