Abstract
Cellular automata (CAs) are used for modeling the problem of adaptation in natural and artificial systems, but it is hard to design CAs having desired behavior. To support the task of designing CAs, this paper proposes a method for automatic discovery of cellular automata rules (CA-rules). Given a sequence of CA configurations, we first collect cellular changes of states as cases. The collected cases are then classified using a decision tree, which is used for constructing CA-rules. Conditions for classifying cases in a decision tree are computed using genetic programming. We perform experiments using several types of CAs and verify that the proposed method successfully finds correct CA-rules.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamatzky, A.: Identification of Cellular Automata. Taylor& Francis, London (1994)
Liu, B., Hu, M., Hsu, W.: Intuitive representation of decision trees using general rules and exceptions. In: Proc. AAAI 2000, pp. 615–620. MIT Press, Cambridge (2000)
Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Systems 7, 89–130 (1993)
Toffoli, T., Margolous, N.: Cellular Automata Machines. MIT Press, Cambridge (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maeda, Ki., Sakama, C. (2003). Discovery of Cellular Automata Rules Using Cases. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds) Discovery Science. DS 2003. Lecture Notes in Computer Science(), vol 2843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39644-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-39644-4_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20293-6
Online ISBN: 978-3-540-39644-4
eBook Packages: Springer Book Archive