Abstract
Presented is an algorithm (for learning a subclass of erasing regular pattern languages) which can be made to run with arbitrarily high probability of success on extended regular languages generated by patterns π of the form x 0 α 1 x 1 ... α m x m for unknown m but known c, from number of examples polynomial in m (and exponential in c), where α 1...α m are variables and where α 1,...,α m are each strings of constants or terminals of length c. This assumes that the algorithm randomly draws samples with natural and plausible assumptions on the distribution.
The more general looking case of extended regular patterns which alternate between a variable and fixed length constant strings, beginning and ending with either a variable or a constant string is similarly handled.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)
Arikawa, S., Shinohara, T., Yamamoto, A.: Learning elementary formal systems. Theoretical Computer Science 95, 97–113 (1992)
Shinohara, T., Arimura, H.: Inductive inference of unbounded unions of pattern languages from positive data. Theoretical Computer Science 241, 191–209 (2000)
Bratko, I., Muggleton, S.: Applications of inductive logic programming. Communications of the ACM (1995)
Brāzma, A., Ukkonen, E., Vilo, J.: Discovering unbounded unions of regular pattern languages from positive examples. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano, S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 95–104. Springer, Heidelberg (1996)
Case, J., Jain, S., Kaufmann, S., Sharma, A., Stephan, F.: Predictive learning models for concept drift. Theoretical Computer Science 268, 323–349 (2001) (Special Issue for ALT 1998)
Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning for bounded data mining. Information and Computation 152(1), 74–110 (1999)
Erlebach, T., Rossmanith, P., Stadtherr, H., Steger, A., Zeugmann, T.: Learning one-variable pattern languages very efficiently on average, in parallel, and by asking queries. Theoretical Computer Science 261(1), 119–156 (2001)
Gold, E.M.: Language identification in the limit. Information & Control 10, 447–474 (1967)
Kearns, M., Pitt, L.: A polynomial-time algorithm for learning k-variable pattern languages from examples. In: Rivest, R., Haussler, D., Warmuth, M.K. (eds.) Proceedings of the Second Annual ACM Workshop on Computational Learning Theory, pp. 57–71. Morgan Kaufmann Publishers Inc., San Francisco (1989)
Kilpeläinen, P., Mannila, H., Ukkonen, E.: MDL learning of unions of simple pattern languages from positive examples. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 252–260. Springer, Heidelberg (1995)
Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern languages. New Generation Computing 8, 361–370 (1991)
Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood (1994)
Matsumoto, S., Shinohara, A.: Learnability of subsequence languages. In: Information Modeling and Knowledge Bases VIII, pp. 335–344. IOS Press, Amsterdam (1997)
Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)
Miyano, S., Shinohara, A., Shinohara, T.: Polynomial-time learning of elementary formal systems. New Generation Computing 18, 217–242 (2000)
Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19/20, 669–679 (1994)
Nix, R.: Editing by examples. Technical Report 280, Department of Computer Science, Yale University, New Haven, CT, USA (1983)
Reidenbach, D.: A Negative Result on Inductive Inference of Extended Pattern Languages. In: Cesa-Bianchi, N., Numao, M. (eds.) Proceedings of 13th International Conference Algorithmic Learning Theory, ALT 2002, pp. 308–320. Springer, Heidelberg (2002)
Reischuk, R., Zeugmann, T.: Learning one-variable pattern languages in linear average time. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 198–208. ACM Press, New York (1998)
Rossmanith, P., Zeugmann, T.: Stochastic Finite Learning of the Pattern Languages. Machine Learning 44(1/2), 67–91 (2001); Special Issue on Automata Induction, Grammar Inference, and Language Acquisition
Salomaa, A.: Patterns (The Formal Language Theory Column). EATCS Bulletin 54, 46–62 (1994)
Salomaa, A.: Return to patterns (The Formal Language Theory Column). EATCS Bulletin 55, 144–157 (1994)
Schapire, R.: Pattern languages are not learnable. In: Fulk, M.A., Case, J. (eds.) Proceedings, 3rd Annual ACM Workshop on Computational Learning Theory, pp. 122–129. Morgan Kaufmann Publishers, Inc., San Francisco (1990)
Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S., Arikawa, S.: Knowledge acquisition from amino acid sequences by machine learning system BONSAI. Trans. Information Processing Society of Japan 35, 2009–2018 (1994)
Shinohara, T.: Polynomial time inference of extended regular pattern languages. In: Goto, E., Nakajima, R., Yonezawa, A., Nakata, I., Furukawa, K. (eds.) RIMS 1982. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1983)
Shinohara, T.: Inferring unions of two pattern languages. Bulletin of Informatics and Cybernetics 20, 83–88 (1983)
Shinohara, T., Arikawa, S.: Learning data entry systems: An application of inductive inference of pattern languages. Research Report 102, Research Institute of Fundamental Information Science, Kyushu University (1983)
Shinohara, T., Arikawa, S.: Pattern inference. In: Lange, S., Jantke, K.P. (eds.) GOSLER 1994. LNCS (LNAI), vol. 961, pp. 259–291. Springer, Heidelberg (1995)
Smullyan, R.: Theory of Formal Systems, Annals of Mathematical Studies, Princeton, NJ, vol. (47) (1961)
Valiant, L.G.: A theory of the learnable. Communications of the ACM 27, 1134–1142 (1984)
Wright, K.: Identification of unions of languages drawn from an identifiable class. In: Rivest, R., Haussler, D., Warmuth, M.K. (eds.) Proceedings of the Second Annual Workshop on Computational Learning Theory, pp. 328–333. Morgan Kaufmann Publishers, Inc., San Francisco (1989)
Zeugmann, T.: Lange and Wiehagen’s pattern language learning algorithm: An average-case analysis with respect to its total learning time. Annals of Mathematics and Artificial Intelligence 23(1–2), 117–145 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Case, J., Jain, S., Reischuk, R., Stephan, F., Zeugmann, T. (2003). Learning a Subclass of Regular Patterns in Polynomial Time. In: Gavaldá, R., Jantke, K.P., Takimoto, E. (eds) Algorithmic Learning Theory. ALT 2003. Lecture Notes in Computer Science(), vol 2842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39624-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-39624-6_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20291-2
Online ISBN: 978-3-540-39624-6
eBook Packages: Springer Book Archive