Acceleration Output Prediction of Buildings Using a Polynomial Artificial Neural Network | SpringerLink
Skip to main content

Acceleration Output Prediction of Buildings Using a Polynomial Artificial Neural Network

  • Chapter
Hybrid Intelligent Systems

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 208))

Abstract

Severe earthquake motions could make civil structures to undergo hysteretic cycles and crack or yield their resistant elements. The present research proposes the use of a polynomial artificial neural network to identify and predict, on-line, the behavior of such nonlinear systems. Predictions are carried out first on theoretical hysteretic models and later using two real seismic records acquired on a 24-story concrete building in Mexico City. Only two cycles of movement are needed for the identification process and the results show fair prediction of the acceleration output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baber, T., and Wen, Y. K., “Random Vibration of Hysteretic, Degrading Systems”, J. of Engineering Mechanics Division, ASCE, 107(6), (1981)

    Google Scholar 

  2. Bazán Zurita, E., and Meli Piralla, R., Manual de Diseño Sísmico de Edificios, Editorial Limusa, Grupo Noriega Editores, México, D.F., (1995)

    Google Scholar 

  3. Box, G. E. P., and Jenkin, G. M., Time Series Analysis: Forecasting and Control, San Francisco, CA, Holden-Day, (1970)

    MATH  Google Scholar 

  4. Canudas de Wit, C., Olsson, H., Aström, K. J., and Lischinsky, P., “A New Model for Control of Systems with Friction”, IEEE Transactions on Automatic Control, Vol. 40, No. 3, (1995)

    Google Scholar 

  5. Chase, J. G., Barroso, L. R., and Hwang, K. S., “LMS-based Structural Health Monitoring Methods for the ASCE Benchmark Problem”, Proceedings of the American Control Conference ACC, Boston, MA, June 30 - July 2, (2004)

    Google Scholar 

  6. Chen, S., and Billings, A., “Representations of Nonlinear Systems: the NARMAX model”, Int. J. of Control, Vol. 49, No. 3, (1989)

    Google Scholar 

  7. Dahl, P. R., “Solid Friction Damping of Mechanical Vibrations”, AIAA Journal, Vol. 14, (1976) pp. 1675–1682

    Article  Google Scholar 

  8. Gomez-Ramirez, E., Pozniak, A., Gonzalez-Yunes, A., and Avila-Alvarez, M., “Adaptive Architecture of Polynomial Artificial Neural Network to Forecast Nonlinear Time Series”, Congress on Evolutionary Computation, CEC ′99, Mayflower, Washington, D.C., USA, July 6 - 9, (1999)

    Google Scholar 

  9. Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., Skelton, R. E., Soong, T. T., Spencer, B. F., and Yao, J. T. P., “Structural Control: Past, Present and Future”, Journal of Engineering Mechanics, Vol. 123, No. 9, Sep., (1997)

    Google Scholar 

  10. Humar, J. L., Dynamics of Structures, A. A. Balkema Publishers, 2nd Edition, (2001)

    Google Scholar 

  11. Korenberg, M., Billings, S. A., Liu, Y. P., and McIlroy, P. J., “Orthogonal Parameter Estimation Algorithm for Non-Linear Stochastic Systems”, International Journal of Control, Vol. 48, No. 1, (1988)

    Google Scholar 

  12. Kosmatopoulos, E. B., Smyth, A. W., Masri, S. F., and Chassiakos, A. G., “Robust Adaptive Neural Estimation of Restoring Forces in Nonlinear Structures”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 68, November, (2001)

    Google Scholar 

  13. Loh, C. H., and Chung, S. T., “A Three-Stage Identification Approach for Hysteretic Systems”, Earthquake Engineering and Structural Dynamics, Vol. 22, (1993) 129–150

    Article  Google Scholar 

  14. Macki, J. W., Nistri, P., and Zecca, P., “Mathematical Models for Hysteresis”, SIAM Rev., Vol. 35, (1993) 94–123

    Article  MATH  MathSciNet  Google Scholar 

  15. Martinez-Garcia, J. C., Gomez-Gonzalez, B., Martinez-Guerra, R., and Rivero- Angeles, F. J., “Parameter Identification of Civil Structures Using Partial Seismic Instrumentation”, in 5th Asian Control Conference, ASCC, Melbourne, Australia, July 20–23, (2004)

    Google Scholar 

  16. Masri, S. F., Miller, R. K., Saud, A. F., and Caughey, T. K., “Identification of Nonlinear Vibrating Structures: Part I — Formulation”, Transactions of the ASME, J. of Applied Mechanics, Vol. 57, Dec., (1987)

    Google Scholar 

  17. Masri, S. F., Chassiakos, A. G., and Caughey, T. K., “Structure-unknown nonlinear dynamic systems: identification through neural networks”, Smart Mater. Struct., 1, (1992) 45–56

    Article  Google Scholar 

  18. Masri, S. F., Chassiakos, A. G., and Caughey, T. K., “Identification of nonlinear dynamic systems using neural networks”, J. of Applied Mechanics, 60, (1993) 123–133

    Google Scholar 

  19. Mohammad, K. S., Worden, K., and Tomlinson, G. R., “Direct Parameter Estimation for Linear and Non-linear Structures”, Journal of Sound and Vibration, 152 (3), (1992)

    Google Scholar 

  20. Ni, Y. Q., Ko, J. M., and Wong, C. W., “Nonparametric Identification of Nonlinear Hysteretic Systems”, Journal of Engineering Mechanics, Vol. 125, No. 2, February, (1999)

    Google Scholar 

  21. Rice, H. J., and Fitzpatrick, J. A., “A Procedure for the Identification of Linear and Non-linear Multi-Degree-of-Freedom Systems”, J. of Sound and Vibration, 149 (3), (1991)

    Google Scholar 

  22. Smyth, A. W., Masri, S. F., Caughey, T. K., and Hunter, N. F., “Surveillance of Mechanical Systems on the Basis of Vibration Signature Analysis”, Transactions of the ASME, J. of Applied Mechanics, Vol. 67, Sept., (2000)

    Google Scholar 

  23. Sugeno, M., Industrial Applications of Fuzzy Control, Elsevier Science Pub. Co., (1985)

    Google Scholar 

  24. Wen, Y. K., “Method for Random Vibration of Hysteretic Systems”, Journal of Engineering Mechanics, ASCE, 102(2), (1976) 249–263

    Google Scholar 

  25. Yang, J. N., Pan, S., and Lin, S., “Identification and Tracking of Structural Parameters with Unknown Excitations”, Proceedings of the American Control Conference ACC, Boston, MA, June 30 - July 2, (2004)

    Google Scholar 

  26. Yar, M., and Hammond, J. K., “Parameter Estimation for Hysteretic Systems”, J. of Sound and Vibration, 117 (1), (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Rivero-Angeles, F.J., Gomez-Ramirez, E. (2007). Acceleration Output Prediction of Buildings Using a Polynomial Artificial Neural Network. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Hybrid Intelligent Systems. Studies in Fuzziness and Soft Computing, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37421-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37421-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37419-0

  • Online ISBN: 978-3-540-37421-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics