Abstract
Severe earthquake motions could make civil structures to undergo hysteretic cycles and crack or yield their resistant elements. The present research proposes the use of a polynomial artificial neural network to identify and predict, on-line, the behavior of such nonlinear systems. Predictions are carried out first on theoretical hysteretic models and later using two real seismic records acquired on a 24-story concrete building in Mexico City. Only two cycles of movement are needed for the identification process and the results show fair prediction of the acceleration output.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baber, T., and Wen, Y. K., “Random Vibration of Hysteretic, Degrading Systems”, J. of Engineering Mechanics Division, ASCE, 107(6), (1981)
Bazán Zurita, E., and Meli Piralla, R., Manual de Diseño Sísmico de Edificios, Editorial Limusa, Grupo Noriega Editores, México, D.F., (1995)
Box, G. E. P., and Jenkin, G. M., Time Series Analysis: Forecasting and Control, San Francisco, CA, Holden-Day, (1970)
Canudas de Wit, C., Olsson, H., Aström, K. J., and Lischinsky, P., “A New Model for Control of Systems with Friction”, IEEE Transactions on Automatic Control, Vol. 40, No. 3, (1995)
Chase, J. G., Barroso, L. R., and Hwang, K. S., “LMS-based Structural Health Monitoring Methods for the ASCE Benchmark Problem”, Proceedings of the American Control Conference ACC, Boston, MA, June 30 - July 2, (2004)
Chen, S., and Billings, A., “Representations of Nonlinear Systems: the NARMAX model”, Int. J. of Control, Vol. 49, No. 3, (1989)
Dahl, P. R., “Solid Friction Damping of Mechanical Vibrations”, AIAA Journal, Vol. 14, (1976) pp. 1675–1682
Gomez-Ramirez, E., Pozniak, A., Gonzalez-Yunes, A., and Avila-Alvarez, M., “Adaptive Architecture of Polynomial Artificial Neural Network to Forecast Nonlinear Time Series”, Congress on Evolutionary Computation, CEC ′99, Mayflower, Washington, D.C., USA, July 6 - 9, (1999)
Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., Skelton, R. E., Soong, T. T., Spencer, B. F., and Yao, J. T. P., “Structural Control: Past, Present and Future”, Journal of Engineering Mechanics, Vol. 123, No. 9, Sep., (1997)
Humar, J. L., Dynamics of Structures, A. A. Balkema Publishers, 2nd Edition, (2001)
Korenberg, M., Billings, S. A., Liu, Y. P., and McIlroy, P. J., “Orthogonal Parameter Estimation Algorithm for Non-Linear Stochastic Systems”, International Journal of Control, Vol. 48, No. 1, (1988)
Kosmatopoulos, E. B., Smyth, A. W., Masri, S. F., and Chassiakos, A. G., “Robust Adaptive Neural Estimation of Restoring Forces in Nonlinear Structures”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 68, November, (2001)
Loh, C. H., and Chung, S. T., “A Three-Stage Identification Approach for Hysteretic Systems”, Earthquake Engineering and Structural Dynamics, Vol. 22, (1993) 129–150
Macki, J. W., Nistri, P., and Zecca, P., “Mathematical Models for Hysteresis”, SIAM Rev., Vol. 35, (1993) 94–123
Martinez-Garcia, J. C., Gomez-Gonzalez, B., Martinez-Guerra, R., and Rivero- Angeles, F. J., “Parameter Identification of Civil Structures Using Partial Seismic Instrumentation”, in 5th Asian Control Conference, ASCC, Melbourne, Australia, July 20–23, (2004)
Masri, S. F., Miller, R. K., Saud, A. F., and Caughey, T. K., “Identification of Nonlinear Vibrating Structures: Part I — Formulation”, Transactions of the ASME, J. of Applied Mechanics, Vol. 57, Dec., (1987)
Masri, S. F., Chassiakos, A. G., and Caughey, T. K., “Structure-unknown nonlinear dynamic systems: identification through neural networks”, Smart Mater. Struct., 1, (1992) 45–56
Masri, S. F., Chassiakos, A. G., and Caughey, T. K., “Identification of nonlinear dynamic systems using neural networks”, J. of Applied Mechanics, 60, (1993) 123–133
Mohammad, K. S., Worden, K., and Tomlinson, G. R., “Direct Parameter Estimation for Linear and Non-linear Structures”, Journal of Sound and Vibration, 152 (3), (1992)
Ni, Y. Q., Ko, J. M., and Wong, C. W., “Nonparametric Identification of Nonlinear Hysteretic Systems”, Journal of Engineering Mechanics, Vol. 125, No. 2, February, (1999)
Rice, H. J., and Fitzpatrick, J. A., “A Procedure for the Identification of Linear and Non-linear Multi-Degree-of-Freedom Systems”, J. of Sound and Vibration, 149 (3), (1991)
Smyth, A. W., Masri, S. F., Caughey, T. K., and Hunter, N. F., “Surveillance of Mechanical Systems on the Basis of Vibration Signature Analysis”, Transactions of the ASME, J. of Applied Mechanics, Vol. 67, Sept., (2000)
Sugeno, M., Industrial Applications of Fuzzy Control, Elsevier Science Pub. Co., (1985)
Wen, Y. K., “Method for Random Vibration of Hysteretic Systems”, Journal of Engineering Mechanics, ASCE, 102(2), (1976) 249–263
Yang, J. N., Pan, S., and Lin, S., “Identification and Tracking of Structural Parameters with Unknown Excitations”, Proceedings of the American Control Conference ACC, Boston, MA, June 30 - July 2, (2004)
Yar, M., and Hammond, J. K., “Parameter Estimation for Hysteretic Systems”, J. of Sound and Vibration, 117 (1), (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer
About this chapter
Cite this chapter
Rivero-Angeles, F.J., Gomez-Ramirez, E. (2007). Acceleration Output Prediction of Buildings Using a Polynomial Artificial Neural Network. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Hybrid Intelligent Systems. Studies in Fuzziness and Soft Computing, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37421-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-37421-3_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37419-0
Online ISBN: 978-3-540-37421-3
eBook Packages: EngineeringEngineering (R0)