ChapBoltzmann Machines Learning Using High Order Decimation | SpringerLink
Skip to main content

ChapBoltzmann Machines Learning Using High Order Decimation

  • Chapter
Hybrid Intelligent Systems

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 208))

Abstract

Boltzmann Machines are recurrent and stochastic neural networks that can learn and reproduce probability distributions. This feature has a serious drawback in the exhaustive computational cost involved. In this context, decimation was introduced as a way to overcome this problem, as it builds a smaller network that is able to reproduce exactly the quantities required to update the weights during learning. Decimation techniques developed can only be used in sparsely connected Boltzmann Machines with stringent constraints on the connections between the units. In this work, decimation is extended to any Boltzmann Machine with no restrictions on connections or topology. This is achieved introducing high order weights, which incorporate additional degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackley, D.H., Hinton, G.E. and Sejnowsky, T.J., A learning algorithm for Boltzmann Machines, Cognitive Science, vol. IX, pp. 147–169, 1985.

    Article  Google Scholar 

  2. Hinton, G.E., and Sejnowski, T.J., Learning and relearning in Boltzmann Machines, Parallel Distributed Processing, vol. I, Cambridge, M.A., U.S.A., MIT Press, pp. 282–317, 1986.

    Google Scholar 

  3. J. J. Hopfield; Neural networks and physical systems with emergent collective computational abilities, Neurocomputing: foundations of research, Cambridge, M.A., U.S.A., MIT Press, pp. 457–464, 1988.

    Google Scholar 

  4. Kirkpatrick, S., Gelatt, C.D. Jr and Vecchi, M.P., Optimization by Simulated Annealing, Science 220, pp. 671–680, 1983.

    Article  MathSciNet  Google Scholar 

  5. Saul, L., and Jordan, M.I., Learning in Boltzmann Trees, Neural Computation, vol. 6, num. 6, pp. 1174–1184, 1994.

    Article  MATH  Google Scholar 

  6. Rüger, S.M., Decimatable Boltzmann Machines for Diagnosis: Efficient Learning and Inference, World Congress on Scientific Computation, Modelling and Applied Mathematics, Berlin, Deutschland, vol. 4, pp. 319–324, 1997.

    Google Scholar 

  7. Sejnowski, T.J., High-Order Boltzmann Machines, AIP Conference Proceedings 151 on Neural Networks for Computing, Snowbird, Utah, U.S.A., pp. 398 - 403, 1987.

    Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D. Jr. and Vecchi M.P., Optimization by simulated annealing, Neurocomputing: foundations of research, MIT Press Cambridge, MA, USA, pp. 551–567, 1988.

    Google Scholar 

  9. Aarts, E., and Korst, J., Simulated Annealing and Boltzmann Machines: a stochastic Approach to Combinatorial Optimization and Neural Computing, 3rd. ed., Great Britain, John Wiley and Sons, 1997.

    Google Scholar 

  10. Albizuri, F.X., et al., The High-Order Boltzmann Machine: Learned distribution and Topology, IEEE Transactions on Neural Networks, vol. 6, num. 3, pp. 767–770, 1995.

    Article  Google Scholar 

  11. Kullback, S., Information theory and statistics, 2nd ed, New York, U.S.A., New York: Willey, 1959.

    MATH  Google Scholar 

  12. Itzykson, C. and Drouffe, J., Statistical field theory, Cambridge, Cambridge University Press, 1991.

    Google Scholar 

  13. ælvarez, V., et al., Matrices cocilicas de Hadamard sobre productos semidirectos, III Jornadas de Matemàtica Discreta y Algorítmica 3JMDA, Sevilla, Spain, pp. 155–158, 2002.

    Google Scholar 

  14. Assmus Jr., E. F. and Key, J. D., Hadamard matrices and their designs: a coding theorethic approach, Trans. Amer. Soc., to appear.

    Google Scholar 

  15. Park, C. H., Song, H. Y. and Park, K. T., Existence and classification of Hadamard matrices, Signal Processing Proceedings, 1998. ICSP '98, Fourth International Conference on, vol. 1, pp. 117–121, 1998.

    Google Scholar 

  16. Duda, R.O., Hart, P.E. and Stork D.G., Pattern Classification, 2nd Ed., U.S.A., Wiley-Interscience Publication, John Wiley & Sons, INC., 2001.

    MATH  Google Scholar 

  17. Li, D. et al., Studying the effects of multiplication neurons for parity problem, Proceedings of the 41st SICE Annual Conference, SICE 2002, vol.: 5, pp. 2678–2681, August 2002.

    Article  Google Scholar 

  18. Møller, M.F., A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, vol. 6, pp. 525–533, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Farguell, E., Mazzanti, F., Gomez-Ramirez, E. (2007). ChapBoltzmann Machines Learning Using High Order Decimation. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Hybrid Intelligent Systems. Studies in Fuzziness and Soft Computing, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37421-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37421-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37419-0

  • Online ISBN: 978-3-540-37421-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics