Mesh Modification Under Local Domain Changes | SpringerLink
Skip to main content

Abstract

We propose algorithms to incrementally modify a mesh of a planar domain by interactively inserting and removing elements (points, segments, polygonal lines, etc.) into or from the planar domain, keeping the quality of the mesh during the process. Our algorithms, that combine mesh improvement techniques, achieve quality by deleting, moving or inserting Steiner points from or into the mesh. The changes applied to the mesh are local and the number of Steiner points added during the process remains low. Moreover, our approach can also be applied to the directly generation of refined Delaunay quality meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. N. Amenta, M. Bern and D. Epstein. Optimal point placement for mesh smoothing. In SODA:ACM-SIAM Symposium on Discrete Algorithms, 1997.

    Google Scholar 

  2. 2. A. Bowyer. Computing Dirichlet Tessellations. Computer Journal, 24:2:162–166, 1981.

    Article  Google Scholar 

  3. 3. K. Clarkson and K. Mehlhorn and R. Seidel. Four results on randomized incremental constructions. Computational Geometry: Theory and Applications, 3:185–212, 1993.

    MATH  Google Scholar 

  4. 4. O. Devillers. On deletion in Delaunay triangulation. 15th Annual ACM Symposium on Computational Geometry, 181–188, 1999.

    Google Scholar 

  5. 5. L. Freitag and M. Jones and P. Plassmann. An efficient parallel algorithm for mesh smoothing. In Proceedings of the Fourth International Meshing Roundtable, 47–58, 1995.

    Google Scholar 

  6. 6. N. Han-Wen and A.-F. van der Stappen. A Delaunay approach to interactive cutting in triangulated surfaces. In J.D. Boissonnat, J. Burdick, K. Goldbrg & S. Hutchinson (Eds.), Algorithmic Foundations of Robotics V, Springer-Verlag, 113–129, 2004.

    Google Scholar 

  7. 7. S. Har-Peled and A. Üng ö r. A Time-Optimal Delaunay Refinement Algorithm in Two Dimensions. 21st Annual ACM Symposium on Computational Geometry (SoCG), 228–229, 2005.

    Google Scholar 

  8. 8. M. Kallmann and H. Bieri and D. Thalmann. Fully Dynamic Constrained Delaunay Triangulation. Geometric Modelling For Scientific Visualization - Spring-Verlag, 2003.

    Google Scholar 

  9. 9. C.-L. Lawson. Software for C 1 Surface Interpolation. Mathematical Software III(John R.Rice, editor), 161–194, 1977.

    Google Scholar 

  10. 10. G.-L. Miller and S.-E. Pav and N.-J. Walkington. Fully incremental 3d Delaunay mesh generation. In Proceedings 11th International Meshing Roundtable, 75–86, 2002.

    Google Scholar 

  11. 11. S.-E. Pav. Delaunay Refinement Algorithms. Department of Mathematical Sciences - Carnegie Mellon University - PhD thesis, 2003.

    Google Scholar 

  12. 12. J. Ruppert. A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation. Journal of Algorithms, 18:3:548–585, 1995.

    Article  MATH  Google Scholar 

  13. 13. J.-R. Shewchuk. Delaunay Refinement Mesh Generation. School of Computer Science - Carnegie Mellon University - PhD thesis, 1997.

    Google Scholar 

  14. 14. D.-F. Watson. Computing the n-dimensional Delaunay Tessellation with Application to Voronoi Polytopes. Computer Journal, 24:2:167–172, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Coll, N., Guerrieri, M., Sellarès, J.A. (2006). Mesh Modification Under Local Domain Changes. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34958-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34957-0

  • Online ISBN: 978-3-540-34958-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics