How Efficient are Delaunay Refined Meshes? An Empirical Study | SpringerLink
Skip to main content

How Efficient are Delaunay Refined Meshes? An Empirical Study

  • Conference paper
Proceedings of the 15th International Meshing Roundtable

Abstract

Given a data function, f(x, y), defined for (x, y) in a domain,D and an error measure for approximating f on D, we can call a piecewise linear function, f pl(x, y), acceptable if its error measure is less than or equal to a given error tolerance. Adaptive Delaunay Refinement (ADR) is one approach to generating a mesh for D that can be used to create an acceptable f pl(x, y). A measure of the efficiency of methods for generating a mesh, M, for piecewise approximation is the size of M. In this paper, we present empirical evidence that ADR generated meshes can be twice a large as necessary for producing acceptable interpolants for harmonic functions. The error measure used in this study is the maximum of the triangle average L2 errors in M. This observation is based on demonstrating a comparison mesh generating using maximal efficiency mesh theory as reviewed in the paper. There are two different approaches to point placement commonly used in ADR, edge based refinement and circumcenter based refinement. Our study indicates that there is no significant difference in the efficiency of the meshes generated by these two approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. A. Adler. On the bisection method for triangles. Mathematics of Computation, 40:571–574, 1983. similarity classes.

    Article  MATH  Google Scholar 

  2. 2. T. J. Baker. Triangulations, mesh generation and point placement strategies. In D. Caughey, editor, Computing the Future, pages 61–75. John Wiley, 1994.

    Google Scholar 

  3. 3. R. E. Bank. PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, Users' Guide 8.0. SIAM, Philadelphia, 1998.

    Google Scholar 

  4. 4. R. E. Bank and A. H. Sherman. The use of adaptive grid refinement for badly behaved elliptic partial Differential equations. In R. Vichnevetsky and R. S. Stepleman, editors, Advances in Computer Methods for Partial Differential Equations-III, pages 33–39. IMACS, 1979.

    Google Scholar 

  5. 5. R. E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial differential equations. Math Comp, 44(170):283–301, 1985.

    Article  MATH  Google Scholar 

  6. 6. M. Berzins. A solution-based triangular and tetrahedral mesh quality indicator. SIAM J. Sci. Stat. Comput., 19:2051–2060, 1998.

    Article  MATH  Google Scholar 

  7. 7. H. Borouchaki and P. L. George. Aspects of 2-d delaunay mesh generation. International Journal for Numerical Methods in Engineering, 40:1957–1975, 1997.

    Article  MATH  Google Scholar 

  8. 8. L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces. In Proc. 9th Annual Comp. Geometry. ACM Press, 1993. QA448.D38S87x.

    Google Scholar 

  9. 9. E. F. D'Azevedo. Optimal triangular mesh generation by coordinate transformation. SIAM J. Sci. Stat. Comput., 12:755–786, 1991.

    Article  MATH  Google Scholar 

  10. 10. E. F. D'Azevedo. On adaptive mesh generation in two-dimensions. In S Owen, editor, Proceedings: 8th International Meshing Round Table. Sandia National Laboratories, 1999.

    Google Scholar 

  11. 11. E. F. D'Azevedo and R. B. Simpson. On optimal interpolation triangle incidences. SIAM J. Sci. Stat. Comput., 10:1063–1075, 1989.

    Article  MATH  Google Scholar 

  12. 12. W. H. Frey. Selective refinement: A new strategy for automatic node placement in graded triangular meshes. International Journal for Numerical Methods in Engineering, 24:2183–2200, 1987.

    Article  MATH  Google Scholar 

  13. 13. P. L. George and H. Borouchaki. Delaunay Triangulation and Meshing. Hermes, 1998.

    Google Scholar 

  14. 14. D. J. Mavriplis. Adaptive mesh generation for viscous flows using Delaunay triangulation. Journal of Computational Physics, 90:271–291, 1990.

    Article  MATH  Google Scholar 

  15. 15. E. Nadler. Piecewise Linear Approximation on Triangles of a Planar Region. PhD thesis, Brown University, 1985. order Number DA8519885.

    Google Scholar 

  16. 16. J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz. Adaptive remeshing for compressible flow computations. Journal of Computational Physics, 72, 1987.

    Google Scholar 

  17. 17. S. Rippa. Long and thin triangles can be good for linear interpolation. SIAM J. Numer. Analysis, 9:257–270, 1992.

    Article  Google Scholar 

  18. 18. M.-C. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. International Journal for Numerical Methods in Engineering, 20:745–756, 1984.

    Article  MATH  Google Scholar 

  19. 19. M. C. Rivara. New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. Int. J. Num. Methods, 40:3313–3324, 1997.

    Article  MATH  Google Scholar 

  20. 20. M. C. Rivara and N. Hitschfeld. LEPP-Delaunay algorithm: a robust tool for producing size-optimal quality triangulations. In Proc. of the 8th Int. Meshing Roundtable, pages 205–220, October 1999.

    Google Scholar 

  21. 21. M.-C. Rivara and M. Palma. New LEPP-Algorithms for quality polygon and volume triangulation: Implementation issues and proctical behavior. In Trends in Unstructured Mesh Generation, volume AMD-Vol. 220, pages 1–8. American Society of Meshanical Engineers, 1997. The Joint ASME/ASCE/SES Summer Meeting, Evanston, Illinois, USA, July 1997.

    Google Scholar 

  22. 22. J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensi onal mesh generation. J of Algorithms, 18:548–585, 1995.

    Article  MATH  Google Scholar 

  23. 23. G. Sewell. A finite element program with automatic user-controlled mesh grading. In R. Vichnevetsky and R. S. Stepleman, editors, Advances in Computer Methods for Partial Differential Equations- III, pages 8–10. IMACS, 1979.

    Google Scholar 

  24. 24. J. R. Shewchuck. What is a good linear element? interpolation, conditioning, and quality measures. In S. Owen, editor, Proceedings: 11th International Meshing Round Table. Sandia National Laboratories, 2002.

    Google Scholar 

  25. 25. J. R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and delaunay triangulator. In ACM, editor, First Workshop on Applied Computational Geometry, pages 124–133. (Philadelphia, Pennsylvania), 1996.

    Google Scholar 

  26. 26. R. B. Simpson. Anisotropic mesh transformations and optimal error control. Applied Num. Math., 14:183–198, 1994.

    Article  MATH  Google Scholar 

  27. 27. I. S. Sokolnikoff. Tensor Analysis. Theory and Applications to Geometry and echanics of Continua. Wiley, 2nd edition, 1964.

    Google Scholar 

  28. 28. G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice Hall, 1973.

    Google Scholar 

  29. 29. N. Sukumar. Voronoi cell finite difference method for the diffusion operator on arbitrary unstructured grids. International Journal for Numerical Methods in Engineering, 57:1–34, 2003. Laplacian.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Simpson, B. (2006). How Efficient are Delaunay Refined Meshes? An Empirical Study. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34958-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34957-0

  • Online ISBN: 978-3-540-34958-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics