Design of Parallel Estimation of Distribution Algorithms | SpringerLink
Skip to main content

Design of Parallel Estimation of Distribution Algorithms

  • Chapter
Scalable Optimization via Probabilistic Modeling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 33))

  • 1082 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mühlenbein H, Paass G (1996) From Recombination of Genes to the Estimation of Distributions: I. Binary Parameters. Lecture Notes in Computer Science, 1141, pp. 178-187

    Article  Google Scholar 

  2. Larranaga P, Lozano JA (2002) Estimation of Distribution Algorithms. A new Tool for Evolutionary Computation. Kluwer Academic, Dordrecht, pp. 57-100

    MATH  Google Scholar 

  3. Pelikan M, Goldberg DE, Lobo F (1999) A survey of optimization by building and using probabilistic models, IlliGAL Report No. 99018, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL

    Google Scholar 

  4. Bosman PAN, Thierens D (1999) An algorithmic framework for density estimation based evolutionary algorithms. Utrecht University Technical Report UU-CS-1999-46, Utrecht

    Google Scholar 

  5. Ocenasek J, Schwarz J (2000) The Parallel Bayesian Optimization Algorithm, In: Proceedings of the European Symposium on Computational Inteligence, Physica, Kosice, Slovak Republic, pp. 61-67

    Google Scholar 

  6. Ocenasek J, Schwarz J (2001) The Distributed Bayesian Optimization Algorithm for combinatorial optimization, EUROGEN 2001 - Evolutionary Methods for Design, Optimisation and Control, Athens, Greece, CIMNE, pp. 115-120

    Google Scholar 

  7. Lozano JA, Sagarna R, Larrañaga P (2002) Parallel Estimation of Distribution Algorithms. In: P. Larrañaga, and J. A. Lozano (eds.): Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, Kluwer Academic, Dordrecht, pp. 129-145

    Google Scholar 

  8. Mendiburu A, Miguel-Alonso J, Lozano JA (2004) Implementation and performance evaluation of a parallelization of estimation of Bayesian net-works algorithms. Technical Report EHU-KAT-IK-04-04. Department of Computer Architecture and Technology, The University of the Basque Country

    Google Scholar 

  9. Ocenasek J, Schwarz J (2002) Estimation of Distribution Algorithm for mixed continuous discrete optimization problems, In:2nd Euro-International Symposium on Computational Intelligence, Kosice, Slovakia, IOS, Amsterdam, pp. 227-232

    Google Scholar 

  10. Ocenasek J, Schwarz J, Pelikan M (2003) Design of Multithreaded Estimation of Distribution Algorithms. In: Cantú-Paz et al. (Eds.): Genetic and Evolutionary Computation Conference - GECCO 2003. Springer, Berlin Heidelberg New York, pp. 1247-1258

    Chapter  Google Scholar 

  11. Ocenasek J, Pelikan M (2003) Parallel spin glass solving in hierarchical Bayesian optimization algorithm. In: Proceedings of the 9th International Conference on Soft Computing, Mendel 2003, Brno University of Technology, Brno, Czech Republic, pp. 120-125

    Google Scholar 

  12. Gordon VS, Whitley D (1993) Serial and parallel genetic algorithms as function optimizers. In: S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 177-183

    Google Scholar 

  13. Hart WE (1994) Adaptive Global Optimization with Local Search. PhD thesis, University of California, San Diego

    Google Scholar 

  14. Punch WF (1998) How effective are multiple programs in genetic programming. In: JR Koza, W Banzhaf, K Chellapilla, K Deb, M Dorigo, DB Fogel, MH Garzon, DE Goldberg, H Iba, RL Riolo, (ed.), Genetic Programming 98, Morgan Kaufmann, San Francisco, pp. 308-313

    Google Scholar 

  15. Mühlenbein H (1991) Evolution in time and space - The parallel genetic algorithm. In: GJE Rawlins, (ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 316-337

    Google Scholar 

  16. Whitley D, Starkweather T (1990) Genitor II: A distributed genetic algorithm. Journal of Experimental and Theoretical Artificial Intelligence, 2:189-214

    Article  Google Scholar 

  17. Davidor Y (1993) The ECOlogical framework II: Improving GA performance at virtually zero cost. In: S Forrest, (ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 171-176

    Google Scholar 

  18. Calégari PR (1999) Parallelization of Population-Based Evolutionary Algorithms for Combinatorial Optimization Problems. Unpublished doc-toral dissertation, École Polytechnique Fédérale de Lausanne (EPFL)

    Google Scholar 

  19. Cantú-Paz E (2000) Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic, Boston, MA

    MATH  Google Scholar 

  20. Hiroyasu T, Miki M, Sano M, Shimosaka H, Tsutsui S, Dongarra J (2003) Distributed Probabilistic Model-Building Genetic Algorithm, In: Cantú-Paz et al. (Eds.): Genetic and Evolutionary Computation Conference -GECCO 2003. Springer, Berlin Heidelberg New York, pp. 1015-1028

    Chapter  Google Scholar 

  21. Pelikan M, Goldberg DE, Sastry K (2000) Bayesian Optimization Algorithm, Decision Graphs, and Occam’s Razor, IlliGAL Report No. 2000020, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL

    Google Scholar 

  22. Ocenasek J (2002) Parallel Estimation of Distribution Algorithms. PhD. Thesis, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic, pp. 1-154

    Google Scholar 

  23. Cooper GF, Herskovits EH (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, pp. 309-347

    MATH  Google Scholar 

  24. Heckerman D, Geiger D, Chickering M (1994) ‘Learning Bayesian net-works: The combination of knowledge and statistical data’. Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA

    Google Scholar 

  25. Chickering DM, Heckerman D, Meek C (1997) A Bayesian approach to learning Bayesian networks with local structure. Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA

    Google Scholar 

  26. Harik G (1995) Finding multimodal solutions using restricted tournament selection. In: Sixth International Conference on Genetic Algorithms (ICGA-95), pp. 24-31

    Google Scholar 

  27. Pelikan M, Sastry K, Goldberg DE (2002). Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reason-ing, 31(3), pp. 221-258

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ocenasek, J., Cantú-Paz, E., Pelikan, M., Schwarz, J. (2006). Design of Parallel Estimation of Distribution Algorithms. In: Pelikan, M., Sastry, K., CantúPaz, E. (eds) Scalable Optimization via Probabilistic Modeling. Studies in Computational Intelligence, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34954-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34954-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34953-2

  • Online ISBN: 978-3-540-34954-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics