Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Mühlenbein H, Paass G (1996) From Recombination of Genes to the Estimation of Distributions: I. Binary Parameters. Lecture Notes in Computer Science, 1141, pp. 178-187
Larranaga P, Lozano JA (2002) Estimation of Distribution Algorithms. A new Tool for Evolutionary Computation. Kluwer Academic, Dordrecht, pp. 57-100
Pelikan M, Goldberg DE, Lobo F (1999) A survey of optimization by building and using probabilistic models, IlliGAL Report No. 99018, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL
Bosman PAN, Thierens D (1999) An algorithmic framework for density estimation based evolutionary algorithms. Utrecht University Technical Report UU-CS-1999-46, Utrecht
Ocenasek J, Schwarz J (2000) The Parallel Bayesian Optimization Algorithm, In: Proceedings of the European Symposium on Computational Inteligence, Physica, Kosice, Slovak Republic, pp. 61-67
Ocenasek J, Schwarz J (2001) The Distributed Bayesian Optimization Algorithm for combinatorial optimization, EUROGEN 2001 - Evolutionary Methods for Design, Optimisation and Control, Athens, Greece, CIMNE, pp. 115-120
Lozano JA, Sagarna R, Larrañaga P (2002) Parallel Estimation of Distribution Algorithms. In: P. Larrañaga, and J. A. Lozano (eds.): Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, Kluwer Academic, Dordrecht, pp. 129-145
Mendiburu A, Miguel-Alonso J, Lozano JA (2004) Implementation and performance evaluation of a parallelization of estimation of Bayesian net-works algorithms. Technical Report EHU-KAT-IK-04-04. Department of Computer Architecture and Technology, The University of the Basque Country
Ocenasek J, Schwarz J (2002) Estimation of Distribution Algorithm for mixed continuous discrete optimization problems, In:2nd Euro-International Symposium on Computational Intelligence, Kosice, Slovakia, IOS, Amsterdam, pp. 227-232
Ocenasek J, Schwarz J, Pelikan M (2003) Design of Multithreaded Estimation of Distribution Algorithms. In: Cantú-Paz et al. (Eds.): Genetic and Evolutionary Computation Conference - GECCO 2003. Springer, Berlin Heidelberg New York, pp. 1247-1258
Ocenasek J, Pelikan M (2003) Parallel spin glass solving in hierarchical Bayesian optimization algorithm. In: Proceedings of the 9th International Conference on Soft Computing, Mendel 2003, Brno University of Technology, Brno, Czech Republic, pp. 120-125
Gordon VS, Whitley D (1993) Serial and parallel genetic algorithms as function optimizers. In: S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 177-183
Hart WE (1994) Adaptive Global Optimization with Local Search. PhD thesis, University of California, San Diego
Punch WF (1998) How effective are multiple programs in genetic programming. In: JR Koza, W Banzhaf, K Chellapilla, K Deb, M Dorigo, DB Fogel, MH Garzon, DE Goldberg, H Iba, RL Riolo, (ed.), Genetic Programming 98, Morgan Kaufmann, San Francisco, pp. 308-313
Mühlenbein H (1991) Evolution in time and space - The parallel genetic algorithm. In: GJE Rawlins, (ed.), Foundations of Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 316-337
Whitley D, Starkweather T (1990) Genitor II: A distributed genetic algorithm. Journal of Experimental and Theoretical Artificial Intelligence, 2:189-214
Davidor Y (1993) The ECOlogical framework II: Improving GA performance at virtually zero cost. In: S Forrest, (ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 171-176
Calégari PR (1999) Parallelization of Population-Based Evolutionary Algorithms for Combinatorial Optimization Problems. Unpublished doc-toral dissertation, École Polytechnique Fédérale de Lausanne (EPFL)
Cantú-Paz E (2000) Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic, Boston, MA
Hiroyasu T, Miki M, Sano M, Shimosaka H, Tsutsui S, Dongarra J (2003) Distributed Probabilistic Model-Building Genetic Algorithm, In: Cantú-Paz et al. (Eds.): Genetic and Evolutionary Computation Conference -GECCO 2003. Springer, Berlin Heidelberg New York, pp. 1015-1028
Pelikan M, Goldberg DE, Sastry K (2000) Bayesian Optimization Algorithm, Decision Graphs, and Occam’s Razor, IlliGAL Report No. 2000020, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL
Ocenasek J (2002) Parallel Estimation of Distribution Algorithms. PhD. Thesis, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic, pp. 1-154
Cooper GF, Herskovits EH (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, pp. 309-347
Heckerman D, Geiger D, Chickering M (1994) ‘Learning Bayesian net-works: The combination of knowledge and statistical data’. Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA
Chickering DM, Heckerman D, Meek C (1997) A Bayesian approach to learning Bayesian networks with local structure. Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA
Harik G (1995) Finding multimodal solutions using restricted tournament selection. In: Sixth International Conference on Genetic Algorithms (ICGA-95), pp. 24-31
Pelikan M, Sastry K, Goldberg DE (2002). Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reason-ing, 31(3), pp. 221-258
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ocenasek, J., Cantú-Paz, E., Pelikan, M., Schwarz, J. (2006). Design of Parallel Estimation of Distribution Algorithms. In: Pelikan, M., Sastry, K., CantúPaz, E. (eds) Scalable Optimization via Probabilistic Modeling. Studies in Computational Intelligence, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34954-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-34954-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34953-2
Online ISBN: 978-3-540-34954-9
eBook Packages: EngineeringEngineering (R0)