EvoGeneS, a New Evolutionary Approach to Graph Generation | SpringerLink
Skip to main content

EvoGeneS, a New Evolutionary Approach to Graph Generation

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3448))

  • 718 Accesses

Abstract

Graphs are powerful and versatile data structures, useful to represent complex and structured information of interest in various fields of science and engineering. We present a system, called EvoGeneS, based on an evolutionary approach, for generating undirected graphs whose number of nodes is not a priori known. The method is based on a special data structure, called multilist, which encodes undirected attributed relational graphs. Two novel crossover and mutation operators are defined in order to evolve such structure. The developed system has been tested on a wireless network configuration and the results compared with those obtained by a genetic programming based approach recently proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gross, J., Yellen, J.: Graph Theory and Its Application. McGraw-Hill, New York (2001)

    Google Scholar 

  2. Cascetta, E.: Transportation systems engineering: theory and methods. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  3. Crow, M.: Computational Methods for Electric Power Systems. CRC Press, Boca Raton (2003)

    Google Scholar 

  4. Eshera, M.A., Fu, K.S.: A graph distance measure between attributed relational graphs for image analysis. In: Proceedings of 7th Int. Conf. on Pattern Recognition, pp. 75–77. IEEE Press, Los Alamitos (1984)

    Google Scholar 

  5. Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 3–13. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Arcelli, C., Cordella, L., di Baja, G.S. (eds.): IWVF 2001. LNCS, vol. 2059. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  7. Filatov, A., Gitis, A., Kil, I.: Graph-based handwritten digit string recognition. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 2, p. 845. IEEE Computer Society, Los Alamitos (1995)

    Chapter  Google Scholar 

  8. Cordella, L.P., Vento, M.: Symbol recognition in documents: A collection of techniques. International Journal on Document Analysis and Recognition (IJDAR) 3, 73–78 (2000)

    Article  Google Scholar 

  9. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Learning structural shape descriptions from examples. Pattern Recognition Letters 23, 1427–1437 (2002)

    Article  MATH  Google Scholar 

  10. Globus, A., Lawtonb, J., Wipkeb, T.: Automatic molecular design using evolutionary techniques. In: Globus, A., Srivastava, D. (eds.) The Sixth Foresight Conference on Molecular Nanotechnology, Westin Hotel in Santa Clara, CA, USA (1998)

    Google Scholar 

  11. Naofumi Homma, T.A., Higuchi, T.: Multiplier block synthesis using evolutionary graph generation. In: Proceedings of the 2004 NASA/DoD Conference on Evolvable Hardware, pp. 79–82 (2004)

    Google Scholar 

  12. Lohn, J.D., Colombano, S.P.: Automated analog circuit synthesis using a linear representation. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, p. 125. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Hu, J., Goodman, E.: Wireless access point configuration by genetic programming. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, Portland, Oregon, pp. 1178–1184. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  14. Wright, M.H.: Optimization method for base station placement in wireless applications. In: Proceedings of the 1998 IEEE Conference on Vehicular Technology, pp. 287–291. IEEE Press, Los Alamitos (1998)

    Google Scholar 

  15. Hurley, S.: Planning effective cellular mobile radio networks. IEEE Transactions on Vehicular Technology 51, 243–253 (2002)

    Article  Google Scholar 

  16. Lee, C., Kang, H.: Cell planning with capacity expansion in mobile communications a tabu search approach. In: IEEE VTC 2000, pp. 1678–1691 (2000)

    Google Scholar 

  17. Lieska, K., Laitinen, E., Lahteenmaki, J.: Radio coverage optimization with genetic algorithms. In: Proceedings of PIMRC, vol. 1, pp. 318–322 (1998)

    Google Scholar 

  18. Koichi, E., Yoishinori, W.: Automatic cell design for wide area wireless lan systems. Special Issue on Devices and Systems for Mobile Communications 44(4) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cordella, L.P., De Stefano, C., Fontanella, F., Marcelli, A. (2005). EvoGeneS, a New Evolutionary Approach to Graph Generation. In: Raidl, G.R., Gottlieb, J. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2005. Lecture Notes in Computer Science, vol 3448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31996-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31996-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25337-2

  • Online ISBN: 978-3-540-31996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics