Abstract
Evolutionary algorithms are powerful tools in search and optimization tasks with several applications in complex engineering problems. However, setting all associated parameters is not an easy task and the adaptation seems to be an interesting alternative. This paper aims to analyze the effect of self-adaptation of some evolutionary parameters of genetic algorithms (GAs). Here we intend to propose a flexible GA-based algorithm where only few parameters have to be defined by the user. Benchmark problems of combinatorial optimization were used to test the performance of the proposed approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2) (1999)
Rojas, I., Gonzalez, J., Pomares, H., Merelo, J., Castillo, P., Romero, G.: Statistical analysis of the main parameters involved in the design of a genetic algorithm. IEEE Transactions on Systems Man and Cybernetics 32, 31–37 (2002)
Angeline, P.J.: Adaptive and self-adaptive evolutionary computation. In: Attikiouzel, Y., Marks, R., Fukuda, T. (eds.) Computational Intelligence, A Dynamic System Perspective, pp. 152–161. IEEE Press, Los Alamitos (1995)
Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in evolutionary computation: A survey. In: Proceedings of the 4th IEEE International Conference on Evolutionary Computation, pp. 65–69 (1997)
Smith, J., Fogarty, T.C.: Operator and parameter adaptation in genetic algorithms. Soft Computing 1, 81–87 (1997)
Eiben, A.E., Smith, J.E. (eds.): Introduction to Evolutionary Computing. Springer, Heidelberg (2003)
Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)
Spears, W.M.: Adapting crossover in evolutionary algorithms. In: Proceedings of the Fourth Annual Conference on Evolutionary Programming, San Diego, CA (1995)
De Jong, K.: The Analysis of the behaviour of a Class of Genetic Adaptive systems. PhD thesis, Department of Computer Science, University of Michigan (1975)
Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics 16, 122–128 (1986)
Schaffer, J.D., Morishima, A.: An adaptive crossover distribution mechanism for genetic algorithms. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, Cambridge, Massachusetts, United States, pp. 36–40. Lawrence Erlbaum Associates, Inc, Mahwah (1987)
Bremermann, H.J., Rogson, M., Salaff, S.: Global properties of evolution processes. In: Pattee, H.H., Edlsack, E.A., Fein, L., Callahan, A.B. (eds.) Natural Automata and Useful Simulations, pp. 3–41. Spartan Books, Washington D.C (1966)
Smith, J., Fogarty, T.C.: Self-adaptation of mutation rates in a steady-state genetic algorithm. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 318–323 (1996)
Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford (1996)
Fogarty, T.C.: Varying the probability of mutation in the genetic algorithm. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 104–109. Morgan Kaufmann Publishers Inc, San Francisco (1989)
Bäck, T.: Self-adaptation in genetic algorithms. In: Varela, F.J., Bourgine, P. (eds.) Proc. of the 1st European Conf. on Artificial Life, pp. 227–235. MIT Press, Cambridge (1992)
Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 38–47. Morgan Kaufmann Publishers Inc, San Francisco (1993)
Schaffer, J.D., Eshelman, L.J.: On crossover as an evolutionary viable strategy. In: Belew, R., Booker, L. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 61–68 (1991)
Eshelman, L.J., Caruana, R., Schaffer, J.D.: Biases in the crossover landscape. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 10–19. Morgan Kaufmann Publishers Inc, San Francisco (1989)
Sywerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the third international conference on Genetic algorithms, pp. 2–9. Morgan Kaufmann Publishers Inc, San Francisco (1989)
Spears, W.M., De Jong, K.: On the virtues of parameterized uniform crossover. In: Belew, R.K., Booker, L.B. (eds.) Proc. of the Fourth Int. Conf. on Genetic Algorithms, San Mateo, CA, pp. 230–236. Morgan Kaufmann, San Francisco (1991)
De Jong, K., Spears, W.M.: A formal analysis of the role of multi-point crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence 5, 1–26 (1992)
Spears, W.M.: Crossover or mutation? In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, pp. 221–237. Morgan Kaufmann, San Mateo (1993)
De Jong, K., Spears, W.M.: An analysis of the interacting roles of population size and crossover in genetic algorithms. In: Schwefel, H.P., Männer, R. (eds.) Parallel Problem Solving from Nature - Proceedings of 1st Workshop, PPSN 1, Dortmund, Germany, 1-3 1991, vol. 496, pp. 38–47. Springer, Heidelberg (1991)
Spears, W.M., Anand, V.: A study of crossover operators in genetic programming. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 409–418. Springer, Heidelberg (1991)
Eiben, A.E.: 3.7. Multi-parent Recombination. IOP Publishing Ltd and Oxford University Press (1995)
Eiben, A.E.: Multiparent recombination in evolutionary computing. Advances in evolutionary computing: theory and applications, 175–192 (2003)
Mumford, C.L.: Comparing representations and recombination operators for the multi-objective 0/1 knapsack problem. In: CEC 2003: Proceedings of The IEEE Conference on Evolutionary Computation, pp. 854–861. IEEE, Los Alamitos (2003)
Thierens, D.: Adaptive mutation rate control schemes in genetic algorithms. In: CEC 2002: Proceedings of The IEEE Conference on Evolutionary Computation, pp. 980–985. IEEE, Los Alamitos (2002)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)
Khuri, S., Bäck, T., Heitkötter, J.: SAC 94: suite of 0/1 multiple knapsack problem instances (1994), http://elib.zib.de/pub/packages/mp-testdata/ip/sac94-suite
Kimbrough, S.O., Lu, M., Wood, D.H., Wu, D.-J.: Exploring a two-market genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 415–422. Morgan Kaufmann Publishers Inc, San Francisco (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maruo, M.H., Lopes, H.S., Delgado, M.R. (2005). Self-Adapting Evolutionary Parameters: Encoding Aspects for Combinatorial Optimization Problems. In: Raidl, G.R., Gottlieb, J. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2005. Lecture Notes in Computer Science, vol 3448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31996-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-31996-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25337-2
Online ISBN: 978-3-540-31996-2
eBook Packages: Computer ScienceComputer Science (R0)