Abstract
The constraint satisfaction problem (CSP) is a convenient framework for modelling search problems; the CSP involves deciding, given a set of constraints on variables, whether or not there is an assignment to the variables satisfying all of the constraints. This paper is concerned with the quantified constraint satisfaction problem (QCSP), a more general framework in which variables can be quantified both universally and existentially. We study the complexity of restricted cases of the QCSP where the types of constraints that may appear are restricted by a constraint language. We give a complete complexity classification of maximal constraint languages, the largest possible languages that can be tractable. We also give a complete complexity classification of constraint languages arising from symmetric polymorphisms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)
Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with boolean blocks, part II: constraint satisfaction problems. ACM SIGACT-Newsletter 35(1), 22–35 (2004)
Börner, F., Bulatov, A., Krokhin, A., Jeavons, P.: Quantified constraints: Algorithms and complexity. In: Computer Science Logic 2003 (2003)
Bulatov, A.: Combinatorial problems raised from 2-semilattices (manuscript)
Bulatov, A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings of 43rd IEEE Symposium on Foundations of Computer Science, pp. 649–658 (2002)
Bulatov, A.: Malt’sev constraints are tractable. Technical Report PRG-RR-02-05, Oxford University (2002)
Bulatov, A.: Tractable conservative constraint satisfaction problems. In: Proceedings of 18th IEEE Symposium on Logic in Computer Science (LICS 2003), pp. 321–330 (2003)
Bulatov, A.: A graph of a relational structure and constraint satisfaction problems. In: Proceedings of 19th IEEE Annual Symposium on Logic in Computer Science (LICS 2004) (2004)
Bulatov, A., Jeavons, P.: Tractable constraints closed under a binary operation. Technical Report PRG-TR-12-00, Oxford University (2000)
Bulatov, A., Krokhin, A., Jeavons, P.: Constraint satisfaction problems and finite algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 272–282. Springer, Heidelberg (2000)
Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint languages. In: ACM Symposium on Theory of Computing, pp. 667–674 (2001)
Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Information and Computation 117(1), 12–18 (1995)
Chen, H.: Collapsibility and consistency in quantified constraint satisfaction. In: AAAI (2004)
Chen, H.: Quantified constraint satisfaction and 2-semilattice polymorphisms. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 168–181. Springer, Heidelberg (2004)
Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Constraint Satisfaction Problems, Society for Industrial and Applied Mathematics. SIAM Monographs on Discrete Mathematics and Applications (2001)
Dalmau, V.: Some dichotomy theorems on constant-free quantified boolean formulas. Technical Report LSI-97-43-R, Llenguatges i Sistemes Informàtics - Universitat Politècnica de Catalunya (1997)
Dalmau, V.: A new tractable class of constraint satisfaction problems. In: 6th International Symposium on Artificial Intelligence and Mathematics (2000)
Dalmau, V., Pearson, J.: Closure functions and width 1 problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999)
Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998)
Jeavons, P.: On the algebraic structure of combinatorial problems. Theoretical Computer Science 200, 185–204 (1998)
Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency, and closure. Articial Intelligence 101(1-2), 251–265 (1998)
Jeavons, P., Cohen, D., Pearson, J.: Constraints and universal algebra. Annals of Mathematics and Artificial Intelligence 24(1-4), 51–67 (1998)
Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44, 527–548 (1997)
Kavvadias, D., Sideri, M.: The inverse satisfiability problem. SIAM Journal on Computing 28(1), 152–163 (1998)
Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM Journal on Computing 30(6), 1863–1920 (2001)
Kirousis, L.M., Kolaitis, P.G.: The complexity of minimal satisfiability problems. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 407–418. Springer, Heidelberg (2001)
Kolaitis, Ph.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. Journal of Computer and System Sciences 61, 302–332 (2000)
Post, E.L.: The Two-Valued Iterative Systems of Mathematical Logic. Princeton University Press, Princeton (1941)
Rosenberg, I.G.: Minimal clones I: the five types. In: Lectures in Universal Algebra (Proc. Conf. Szeged 1983). Colloq. Math. Soc. Janos Bolyai, vol. 43, pp. 405–427. North-Holland, Amsterdam (1986)
Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 216–226 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, H. (2005). Quantified Constraint Satisfaction, Maximal Constraint Languages, and Symmetric Polymorphisms. In: Diekert, V., Durand, B. (eds) STACS 2005. STACS 2005. Lecture Notes in Computer Science, vol 3404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31856-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-31856-9_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24998-6
Online ISBN: 978-3-540-31856-9
eBook Packages: Computer ScienceComputer Science (R0)