Collective Tree Spanners and Routing in AT-free Related Graphs | SpringerLink
Skip to main content

Collective Tree Spanners and Routing in AT-free Related Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

In this paper we study collective additive tree spanners for families of graphs that either contain or are contained in AT-free graphs. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system \({\cal T}(G)\) of at most μ spanning trees of G such that for any two vertices x,y of G a spanning tree \(T\in {\cal T}(G)\) exists such that d T (x,y)≤ d G (x,y)+r. Among other results, we show that AT-free graphs have a system of two collective additive tree 2-spanners (whereas there are trapezoid graphs that do not admit any additive tree 2-spanner). Furthermore, based on this collection of trees, we derive a compact and efficient routing scheme for those graphs. Also, any DSP-graph (there exists a dominating shortest path) admits one additive tree 4-spanner, a system of two collective additive tree 3-spanners and a system of five collective additive tree 2-spanners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chew, L.P.: There are planar graphs almost as good as the complete graph. J. of Computer and System Sciences 39, 205–219 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal Triple–free Graphs. SIAM J. Discrete Math. 10, 399–430 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple–free graphs. SIAM J. on Computing 28, 1284–1297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dragan, F.F., Yan, C., Lomonosov, I.: Collective Tree Spanners of Graphs. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 64–76. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate distance labeling schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476–487. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for asteroidal triple-free graphs. J. Algorithms 32, 41–57 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kloks, T., Kratsch, D., Müller, H.: On the structure of graphs with bounded asteroidal number. Graphs and Combinatorics 17, 295–306 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)

    Google Scholar 

  9. Ma, T.H., Spinrad, J.P.: On the two-chain subgraph cover and related problems. J. of Algorithms 17, 251–268 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Madanlal, M.S., Venkatesan, G., Pandu Rangan, C.: Tree 3-spanners on interval, permutation and regular bipartite graphs. Inform. Process. Lett. 59, 97–102 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. McConnell, R.M., Spinrad, J.P.: Linear-time transitive orientation. In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, January 5-7, pp. 19–25 (1997)

    Google Scholar 

  12. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Math. Appl. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  13. Peleg, D., and Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. In: Proc. 6th ACM Symposium on Principles of Distributed Computing, Vancouver, pp. 77–85 (1987)

    Google Scholar 

  15. Prisner, E., Kratsch, D., Le, H.-O., Müller, H., Wagner, D.: Additive tree spanners. SIAM Journal on Discrete Mathematics 17, 332–340 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dragan, F.F., Yan, C., Corneil, D.G. (2004). Collective Tree Spanners and Routing in AT-free Related Graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics