Elegant Distance Constrained Labelings of Trees | SpringerLink
Skip to main content

Elegant Distance Constrained Labelings of Trees

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

In our contribution to the study of graph labelings with three distance constraints we introduce a concept of elegant labelings: labelings where labels appearing in a neighborhood of a vertex can be completed into intervals such that these intervals are disjoint for adjacent vertices. We justify introduction of this notion by showing that use of these labelings provides good estimates for the span of the label space, and also provide a polynomial time algorithm to find an optimal elegant labeling of a tree for distance constraints (p,1,1). In addition several computational complexity issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for treedecomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertossi, A.A., Pinotti, M.C., Rizzi, R.: Channel assignment on stronglysimplicial graphs. In: International Parallel and Distributed Processing Symposium, 17th IPDPS 2003, Nice, p. 222. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  3. Chang, G.J., Kuo, D.: The L(2,1)-labeling problem on graphs. SIAM Journal of Discrete Mathematics 9(2), 309–316 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Courcelle, B.: The monadic second-order logic of graphs. I: Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  Google Scholar 

  5. Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discussiones Mathematicae Graph Theory 22, 89–99 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Fiala, J., Kratochvíl, J., Proskurowski, A.: Distance constrained labeling of precolored trees. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 285–292. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Golovach, P.A.: Systems of pair of q-distant representatives and graph colorings. Zap. nau. sem. POMI 293, 5–25 (2002) (in Russian)

    Google Scholar 

  8. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM Journal of Discrete Mathematics 5(4), 586–595 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kearney, P.E., Corneil, D.G.: Tree powers. Journal of Algorithms 29(1), 111–131 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kohl, A., Schreyer, J., Tuza, Z., Voigt, M.: Choosability problems for (d, s)-colorings (2003) (in preparation)

    Google Scholar 

  11. Leese, R.A.: Radio spectrum: a raw material for the telecommunications industry. In: 10th Conference of the European Consortium for Mathematics in Industry, Goteborg (1998)

    Google Scholar 

  12. Lin, Y.L., Skiena, S.S.: Algorithms for square roots of graphs. SIAM Journal on Discrete Mathematics 8(1), 99–118 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Schaefer, T.J.: The complexity of the satisfability problem. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM, New York (1978)

    Chapter  Google Scholar 

  14. van den Heuvel, J., Leese, R.A., Shepherd, M.A.: Graph labeling and radio channel assignment. Journal of Graph Theory 29(4), 263–283 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiala, J., Golovach, P.A., Kratochvíl, J. (2004). Elegant Distance Constrained Labelings of Trees. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics