Abstract
In our contribution to the study of graph labelings with three distance constraints we introduce a concept of elegant labelings: labelings where labels appearing in a neighborhood of a vertex can be completed into intervals such that these intervals are disjoint for adjacent vertices. We justify introduction of this notion by showing that use of these labelings provides good estimates for the span of the label space, and also provide a polynomial time algorithm to find an optimal elegant labeling of a tree for distance constraints (p,1,1). In addition several computational complexity issues are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for treedecomposable graphs. J. Algorithms 12(2), 308–340 (1991)
Bertossi, A.A., Pinotti, M.C., Rizzi, R.: Channel assignment on stronglysimplicial graphs. In: International Parallel and Distributed Processing Symposium, 17th IPDPS 2003, Nice, p. 222. IEEE Computer Society Press, Los Alamitos (2003)
Chang, G.J., Kuo, D.: The L(2,1)-labeling problem on graphs. SIAM Journal of Discrete Mathematics 9(2), 309–316 (1996)
Courcelle, B.: The monadic second-order logic of graphs. I: Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)
Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discussiones Mathematicae Graph Theory 22, 89–99 (2002)
Fiala, J., Kratochvíl, J., Proskurowski, A.: Distance constrained labeling of precolored trees. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 285–292. Springer, Heidelberg (2001)
Golovach, P.A.: Systems of pair of q-distant representatives and graph colorings. Zap. nau. sem. POMI 293, 5–25 (2002) (in Russian)
Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM Journal of Discrete Mathematics 5(4), 586–595 (1992)
Kearney, P.E., Corneil, D.G.: Tree powers. Journal of Algorithms 29(1), 111–131 (1998)
Kohl, A., Schreyer, J., Tuza, Z., Voigt, M.: Choosability problems for (d, s)-colorings (2003) (in preparation)
Leese, R.A.: Radio spectrum: a raw material for the telecommunications industry. In: 10th Conference of the European Consortium for Mathematics in Industry, Goteborg (1998)
Lin, Y.L., Skiena, S.S.: Algorithms for square roots of graphs. SIAM Journal on Discrete Mathematics 8(1), 99–118 (1995)
Schaefer, T.J.: The complexity of the satisfability problem. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM, New York (1978)
van den Heuvel, J., Leese, R.A., Shepherd, M.A.: Graph labeling and radio channel assignment. Journal of Graph Theory 29(4), 263–283 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fiala, J., Golovach, P.A., Kratochvíl, J. (2004). Elegant Distance Constrained Labelings of Trees. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-30559-0_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24132-4
Online ISBN: 978-3-540-30559-0
eBook Packages: Computer ScienceComputer Science (R0)