Treelike Comparability Graphs: Characterization, Recognition, and Applications | SpringerLink
Skip to main content

Treelike Comparability Graphs: Characterization, Recognition, and Applications

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

An undirected graph is a treelike comparability graph if it admits a transitive orientation such that its transitive reduction is a tree. We show that treelike comparability graphs are distance hereditary. Utilizing this property, we give a linear time recognition algorithm. We then characterize permutation graphs that are treelike. Finally, we consider the Partitioning into Bounded Cliques problem on special subgraphs of treelike permutation graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atkinson, M.D.: On computing the number of linear extensions of a tree. Order 7, 23–25 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bodlaender, H.L., Jansen, K.: On the complexity of scheduling incompatible jobs with unit-times. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 291–300. Springer, Heidelberg (1993)

    Google Scholar 

  3. Corneil, D.G., Olariu, S., Stewart, L.: A linear time algorithm to compute a dominating path in an AT-free graph. Information Processing Letters 54(5), 253–257 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Corneil, D.G., Olariu, S., Stewart, L.: Astroidal triple-free graphs. SIAM Journal on Discrete Mathematics 10(3), 399–430 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Canadian Journal of Mathematics 32, 734–765 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cunningham, W.H., Edmonds, J.: Decomposition of directed graphs. SIAM Journal on Algebraic and Discrete Methods 3, 214–228 (1982)

    Article  MATH  Google Scholar 

  7. Dahlhaus, E.: Efficient parallel and linear time sequential split decomposition. In: Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 171–180. Springer, Heidelberg (1994)

    Google Scholar 

  8. Di Stefano, G., Koci, M.L.: A graph theoretical approach to the shunting problem. In: Gerards, B. (ed.) Proceedings of the Workshop on Algorithmic Methods and Models for Optimization of Railways (ATMOS 2003). Electronic Notes in Theoretical Computer Science, vol. 92 (2004)

    Google Scholar 

  9. Golumbic, M.C.: Trivially perfect graphs. Discrete Mathematics 24, 105–107 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Golumbic, M.C., Monma, C.L., Trotter Jr., W.T.: Tolerance graphs. Discrete Applied Mathematics 9, 157–170 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hammer, P.L., Maffray, F.: Completely seperable graphs. Discrete Applied Mathematics 27, 85–99 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jansen, K.: The mutual exclusion scheduling problem for permutation and comparability graphs. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 287–297. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Kirckpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem. In: Proceedings of the 10th Annual ACM Symposium on the Theory of Computing (STOC 1978), pp. 240–245. ACM, The Association for Computing Machinery (1978)

    Chapter  Google Scholar 

  14. Lonc, Z.: On complexity of some chain and antichain partition problems. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 97–104. Springer, Heidelberg (1992)

    Google Scholar 

  15. Wolk, E.S.: A note on “The comparability graph of a tree”. Proceedings of the American Mathematical Society 16, 17–20 (1965)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cornelsen, S., Di Stefano, G. (2004). Treelike Comparability Graphs: Characterization, Recognition, and Applications. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics