Edge-Connectivity Augmentation and Network Matrices | SpringerLink
Skip to main content

Edge-Connectivity Augmentation and Network Matrices

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

We study the following NP-hard graph augmentation problem: Given a weighted graph G and a connected spanning subgraph H of G, find a minimum weight set of edges of G to be added to H so that H becomes 2-edge-connected. We provide a formulation of the problem as a set covering problem, and we analyze the conditions for which the linear programming relaxation of our formulation always gives an integer solution. This yields instances of the problem that can be solved in polynomial time. As we will show in the paper, these particular instances have not only theoretical but also practical interest, since they model a wide range of survivability problems in communication networks.

This work has been partially supported by the Research Project GRID.IT, funded by the Italian Ministry of Education, University and Research, and by the CNR-Agenzia 2000 Program, under Grant No. CNRC00CAB8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM Journal on Computing 5(4), 653–665 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Even, G., Feldman, J., Kortsarz, G., Nutov, Z.: A 3/2-approximation algorithm for augmenting the edge-connectivity of a graph from 1 to 2 using a subset of a given edge set. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129, pp. 90–101. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on Discrete Mathematics 5(1), 25–53 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Frederickson, G.N., Jájá, J.: Approximation algorithm for several graph augmentation problems. SIAM Journal on Computing 10(2), 270–283 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gabow, H.N.: Application of a poset representation to edge-connectivity and graph rigidity. In: Proc. 32nd Ann. IEEE Symp. on Foundations of Computer Science (FOCS 1991), pp. 812–821. IEEE Computer Society, Los Alamitos (1991)

    Chapter  Google Scholar 

  6. Galluccio, A., Proietti, G.: Polynomial time algorithms for edge-connectivity augmentation problems. Algorithmica 36(4), 361–374 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hochbaum, D.S.: Approximating covering and packing problems: set cover, vertex cover, independent set and related problems. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NPHard Problems. PWS Publishing Company, Boston (1996)

    Google Scholar 

  8. Hochbaum, D.S., Megiddo, N., Naor, J.S., Tamir, A.: Tight bounds and 2- approximation algorithms for integer programs with two variables per inequality. Mathematical Programming 62, 69–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems, pp. 223–246. Princeton University Press, New Jersey (1956)

    Google Scholar 

  10. Khuller, S., Thurimella, R.: Approximation algorithms for graph augmentation. Journal of Algorithms 14(2), 214–225 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Khuller, S.: Approximation algorithms for finding highly connected subgraphs. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1996)

    Google Scholar 

  12. Nagamochi, H.: An approximation for finding a smallest 2-edge-connected subgraph containing a specified spanning tree. Discrete Applied Mathematics 126(1), 83–113 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. J. Wiley & Sons, Chichester (1986)

    Google Scholar 

  14. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons, Chichester (1986)

    MATH  Google Scholar 

  15. Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. Journal of Computer and System Sciences 35(1), 96–144 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Conforti, M., Galluccio, A., Proietti, G. (2004). Edge-Connectivity Augmentation and Network Matrices. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics