Abstract
Let p ≥ 1 and q ≥ 0 be integers. A family of sets \({\mathcal F}\) is (p ,q )-intersecting when every subfamily \({\mathcal F}' \subseteq {\mathcal F}\) formed by p or less members has total intersection of cardinality at least q. A family of sets \({\mathcal F}\) is (p ,q )-Helly when every (p,q)-intersecting subfamily \({\mathcal F}' \subseteq {\mathcal F}\) has total intersection of cardinality at least q. A graph G is a (p ,q )-clique-Helly graph when its family of (maximal) cliques is (p,q)-Helly. According to this terminology, the usual Helly property and the clique-Helly graphs correspond to the case p=2, q=1. In this work we present a characterization for (p,q)-clique-Helly graphs. For fixed p,q, this characterization leads to a polynomial-time recognition algorithm. When p or q is not fixed, it is shown that the recognition of (p,q)-clique-Helly graphs is NP-hard.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albertson, M.O., Collins, K.L.: Duality and perfection for edges in cliques. Journal of Combinatorial Theory Series B 36, 298–309 (1984)
Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)
Berge, C.: Hypergraphs. Elsevier Science Publishers B.V., Amsterdam (1989)
Berge, C., Duchet, P.: A generalization of Gilmore’s theorem. In: Fiedler, M. (ed.) Recent Advances in Graph Theory, Acad. Praha, Prague, pp. 49–55 (1975)
Brandstädt, A., Lee, V.B., Spinrad, J.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM, Philadelphia (1999)
Butzer, P.L., Nessel, R.J., Stark, E.L.: Eduard Helly (1884-1943). In memoriam. Resultate der Mathematik 7 (1984)
Cerioli, M.R.: Edge-clique Graphs (in Portuguese). PhD Thesis, Federal University of Rio de Janeiro (1999)
Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd Ann. ACM Symp. on Theory of Computing, New York pp. 151–158 (1971)
Danzer, L., Grünbaum, B., Klee, V.L.: Helly’s theorem and its relatives. In: Proc. Symp. on Pure Math AMS, vol. 7, pp. 101–180 (1963)
Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity Aspects of Generalized Helly Hypergraphs (Submitted)
Dragan, F.F.: Centers of Graphs and the Helly Property. Doctoral Thesis, Moldava State University, Chisinău (1989) (in Russian)
Golumbic, M.C., Jamison, R.E.: The edge intersection graphs of paths in a tree. J. Comb. Theory Series B 38, 8–22 (1985)
Helly, E.: Ueber Mengen konvexer Koerper mit gemeinschaftlichen Punkter, Jahresber. Math.-Verein. 32, 175–176 (1923)
Prisner, E.: Hereditary clique-Helly graphs. Journal of Combinatorial Mathematics and Combinatorial Computing 14, 216–220 (1993)
Prisner, E.: Graph Dynamics. Pitman Research Notes in Mathematics, vol. 338. Longman, London (1995)
Protti, F., Szwarcfiter, J.L.: Clique-inverse graphs of K 3-free and K 4-free graphs. Journal of Graph Theory 35, 257–272 (2000)
Szwarcfiter, J.L.: Recognizing clique-Helly graphs. Ars Combinatoria 45, 29–32 (1997)
Tuza., Z.: Extremal bi-Helly families. Discrete Mathematics 213, 321–331 (2000)
Voloshin, V.I.: On the upper chromatic number of a hypergraph. Australas. J. Combin. 11, 25–45 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dourado, M.C., Protti, F., Szwarcfiter, J.L. (2004). Characterization and Recognition of Generalized Clique-Helly Graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-540-30559-0_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24132-4
Online ISBN: 978-3-540-30559-0
eBook Packages: Computer ScienceComputer Science (R0)