Characterization and Recognition of Generalized Clique-Helly Graphs | SpringerLink
Skip to main content

Characterization and Recognition of Generalized Clique-Helly Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

Abstract

Let p ≥ 1 and q ≥ 0 be integers. A family of sets \({\mathcal F}\) is (p ,q )-intersecting when every subfamily \({\mathcal F}' \subseteq {\mathcal F}\) formed by p or less members has total intersection of cardinality at least q. A family of sets \({\mathcal F}\) is (p ,q )-Helly when every (p,q)-intersecting subfamily \({\mathcal F}' \subseteq {\mathcal F}\) has total intersection of cardinality at least q. A graph G is a (p ,q )-clique-Helly graph when its family of (maximal) cliques is (p,q)-Helly. According to this terminology, the usual Helly property and the clique-Helly graphs correspond to the case p=2, q=1. In this work we present a characterization for (p,q)-clique-Helly graphs. For fixed p,q, this characterization leads to a polynomial-time recognition algorithm. When p or q is not fixed, it is shown that the recognition of (p,q)-clique-Helly graphs is NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albertson, M.O., Collins, K.L.: Duality and perfection for edges in cliques. Journal of Combinatorial Theory Series B 36, 298–309 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  3. Berge, C.: Hypergraphs. Elsevier Science Publishers B.V., Amsterdam (1989)

    MATH  Google Scholar 

  4. Berge, C., Duchet, P.: A generalization of Gilmore’s theorem. In: Fiedler, M. (ed.) Recent Advances in Graph Theory, Acad. Praha, Prague, pp. 49–55 (1975)

    Google Scholar 

  5. Brandstädt, A., Lee, V.B., Spinrad, J.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM, Philadelphia (1999)

    Google Scholar 

  6. Butzer, P.L., Nessel, R.J., Stark, E.L.: Eduard Helly (1884-1943). In memoriam. Resultate der Mathematik 7 (1984)

    Google Scholar 

  7. Cerioli, M.R.: Edge-clique Graphs (in Portuguese). PhD Thesis, Federal University of Rio de Janeiro (1999)

    Google Scholar 

  8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd Ann. ACM Symp. on Theory of Computing, New York pp. 151–158 (1971)

    Google Scholar 

  9. Danzer, L., Grünbaum, B., Klee, V.L.: Helly’s theorem and its relatives. In: Proc. Symp. on Pure Math AMS, vol. 7, pp. 101–180 (1963)

    Google Scholar 

  10. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity Aspects of Generalized Helly Hypergraphs (Submitted)

    Google Scholar 

  11. Dragan, F.F.: Centers of Graphs and the Helly Property. Doctoral Thesis, Moldava State University, Chisinău (1989) (in Russian)

    Google Scholar 

  12. Golumbic, M.C., Jamison, R.E.: The edge intersection graphs of paths in a tree. J. Comb. Theory Series B 38, 8–22 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Helly, E.: Ueber Mengen konvexer Koerper mit gemeinschaftlichen Punkter, Jahresber. Math.-Verein. 32, 175–176 (1923)

    MATH  Google Scholar 

  14. Prisner, E.: Hereditary clique-Helly graphs. Journal of Combinatorial Mathematics and Combinatorial Computing 14, 216–220 (1993)

    MATH  MathSciNet  Google Scholar 

  15. Prisner, E.: Graph Dynamics. Pitman Research Notes in Mathematics, vol. 338. Longman, London (1995)

    Google Scholar 

  16. Protti, F., Szwarcfiter, J.L.: Clique-inverse graphs of K 3-free and K 4-free graphs. Journal of Graph Theory 35, 257–272 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Szwarcfiter, J.L.: Recognizing clique-Helly graphs. Ars Combinatoria 45, 29–32 (1997)

    MATH  MathSciNet  Google Scholar 

  18. Tuza., Z.: Extremal bi-Helly families. Discrete Mathematics 213, 321–331 (2000)

    Article  MathSciNet  Google Scholar 

  19. Voloshin, V.I.: On the upper chromatic number of a hypergraph. Australas. J. Combin. 11, 25–45 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dourado, M.C., Protti, F., Szwarcfiter, J.L. (2004). Characterization and Recognition of Generalized Clique-Helly Graphs. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics